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TL;DR

Mad Network is verifiable identity of assets, orgs or people in any market or group.
The system today allows commercial enterprises to automate trusted transactions with
each other based on certified identity of its primitives of assets, orgs and people. Mad-
Network’s verifiable data structure is similar to a decentralized version of Google’s
Trillian.
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1 The Problem

MadNetwork was conceptualized as a mechanism to address many of the long-standing issues
surrounding the modern advertising industry. The number of problems that plague this space
are no secret. For instance, it has been estimated that in 2017 nearly 40% of all programmatic
impressions were fraudulent [1]. In 2018 that same fraud accounted for more than $19 Billion
USD worldwide [1]. These numbers seem unimaginably large already, but fraud is actually
increasing at an exponential rate [1]. The problem will get much worse before it gets better.

Although many solutions have been proposed to address this fraud, they have proven
unable to make a meaningful impact as of now. A prime example of this lack of innova-
tion rests in ads.txt. This solution was introduced in 2017 [22] and in spite of widespread
adoption, the general trend of fraud has done anything but relent.

The apparent void of solutions to this ever-growing problem has caused many companies
to turn to any technology that can promise a potential solution. Given the nature of adver-
tising fraud, blockchain seems a rational solution. Billions of dollars are securely transferred
every day using these technologies in a transparent and auditable fashion [28]. The reality
is, although many solutions work at the pilot level, the success of these solutions is depen-
dent upon the completely unrealistic settings in which these pilots are executed. The core
problem any AdTech blockchain solution must face is massive scale. This scale is what lacks
in the pilot environment.

Although many blockchain projects have pitched themselves as the savior of AdTech,
no solutions have, as of now, addressed the problem in a scalable manner. The repeated
theme of many AdTech approaches to blockchain necessitates injecting large volumes of
data into a blockchain system with the intent of bringing transparency to the supply chain.
These projects seemed to have forgotten the hard-learned lessons surrounding blockchain
scalability, or the inherent lack thereof [5]. Another often cited mechanism of revolutionizing
the AdTech space through blockchain involves moving the real time bidding process into
smart contract systems. The promise of such systems is to remove the middlemen of the
supply chain while making the open bid process more transparent. Although noble in intent,
these companies failed to realize that distributed consensus takes time. Blockchains are
unable to produce blocks fast enough to meet the sub-second demands of AdTech, not to
mention the millions of requests per second [20]. The good news is AdTech can benefit from
blockchain by building systems that address the heart of the problem.

At the core of advertising, fraud is a very old problem. A problem that has been par-
tially addressed many times in many different ways. That problem is data authenticity and
integrity. The most recent proposal of ads.cert [9] reflects this reality. In order to prevent
fraud, the information being exchanged in the real time bidding supply chains of modern
AdTech must be protected against manipulation and this information must have provable
origination. The IAB has unfortunately failed to see the inherent flaw in the system they
have proposed. Similar to the fact that AdTech blockchain companies are still largely strug-
gling with the modern realities of the very technology they depend upon, the specification
fails to adequately cover the ever growing subset of the advertising market that is not di-
rectly attributable to a web domain. Any solution that hopes to be more than a band-aid
for the current problems of AdTech must operate in a manner that will be viable for mo-
bile applications, over-the-top streaming services, and even mediums we have not as of yet
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contemplated. Further, these solutions are needed today. By writing ads.cert into openRTB
3.X and not providing backward compatibility, adoption will be significantly delayed.

2 The Story

MadNetwork has progressed through many iterations to bring the project to where we are
today. In each of those iterations, we learned what could work and arguably, more impor-
tantly, what would never work. In an early pilot of the technology we leverage the Ethereum
blockchain as a means to rapidly iterate design patterns. Although the Ethereum network
is an outstanding piece of technology that will forever change the world, we kept finding the
sharp edges while using the technology in the enterprise setting. The costs of storage, the
inherent limitations on throughput, the complications around cleaning up stale state, and
the complexity of integrating enterprise partners into the technology all caused complica-
tions. These efforts led us to research other systems that addressed the concerns we were
experiencing. What we found was that these problems are by no means isolated. In fact,
what we found was that the problems were fairly universal.

This early pilot project was a primitive form of our end goal. That goal was to build
a better public key infrastructure (PKI). Given an application specific PKI, all members of
the advertising supply chain can be assigned strongly unforgeable identities. By not linking
the resolution of these keys to a presupposition that all members of the AdTech supply
chain must have a registered internet domain, we open the possibility of using this system to
more technologies. These identities may be used for many purposes, but chief among them
is proofs of integrity and authenticity for messages communicated through third parties.
In this way, we may prevent many forms of fraud and gain insight into the supply chains
themselves. These systems also allow the negotiation and/or distribution of encryption
keys between parties. In the context of advertising this means we can build broadcast
encryption technologies that allow private data to be streamed through openRTB such that
only the intended party/parties may decrypt it. This capability is sorely needed due to the
recent industry transformations being forced by GDPR, CCPA, and other privacy-centric
legislation. Additional capabilities are also possible due to the inclusion of pairing-based
cryptography. These include Hierarchical Identity Based Cryptography for the use of securely
sharing identities between partners such that external groups are not needed for matching
operations. In summary, this system also allows network participants to communicate private
data in the oRTB environment, as well as communicate identity of the user in the bid request
to opted-in recipients.

Although x.509 stands as the de facto standard for enabling enterprise encryption and
server authentication, this system is built on antiquated technologies that have been the
root of many problems in the past two decades. Further, x.509 is fundamentally ill-equipped
to perform all but the most basic of what was needed to fully address the problems of the
AdTech industry. Thus, a new system is needed to combat the concerns of AdTech. This
is once again why the IAB has begun work on ads.cert. Asymmetric cryptography would
appear to be the best solution we have to protecting digital commerce. This should come as
no surprise. What should be surprising is that a high tech industry such as AdTech has not
managed to implement a solution already.
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In order to build such a PKI using the Ethereum blockchain, smart contracts were lever-
aged that allowed a root of trust to associate cryptographic identities with real world busi-
nesses. This decentralized design meant that the cryptographic identity of any registered
business could be referenced in a fully transparent system, without the need to contact our
systems in the process. The other benefit to such a design was that unlike x.509 where
revocation and transparency have been a pain point for years, we inherited these properties
by default from day one. This system also afforded the ability for any registered entity to
register new cryptographic keys, for many different applications, with no interaction from our
systems outside initial registration. This system even allowed those safe keys to be revoked
by simply removing them from the blockchain.

What we were building was analogous to modern technologies intended to shore up
x.509 against rampant fraud that occurred in the last decade. Specifically, technologies such
as Certificate Transparency. Unfortunately, simply using the core concepts of Certificate
Transparency still did not address the issue of revocation. Considering the vast fraud that
already plagues the AdTech industry, any PKI solution that did not accommodate efficient
revocation and scale to millions of requests per second was a liability, not a solution. This
inability to scale to millions of requests is the very failure of OCSP, another x.509 technology
that was intended to address revocation. Fortunately, there does exist a mechanism to
address the problem of revocation. This solution will be covered during the formal discussion
of the PKI we have built.

Although the Ethereum system did work for the purposes of a pilot project, bringing
thousands of new enterprise systems into the fold would eventually prevent any solution
built on this technology from succeeding due to the scaling constraints of the underlying
system. What we needed was a system that was built for the specific purpose of creating a
better PKI. What we needed was a cryptographically verifiable map that could expire stale
records automatically, was capable of sharding so that it could grow smoothly with system
utilization, was inexpensive to write data into, and had mechanisms through which tokens
could be abstracted for enterprise partners. What we needed was MadNetwork.

Unfortunately, such a system did not exist at that time. The lack of such a system
seems astonishing given the trends in enterprise adoption of blockchain technology. Many
enterprise projects do not require the full complexity of a smart contract enabled blockchain.
Further, many enterprise projects require that data not be forever immutable, such as that
mechanism that is afforded by Bitcoin’s OpReturn method of writing data.

In order to accommodate the above challenges, while also acknowledging that creating
strong consensus algorithms is a nontrivial task, MadNetwork has been built as an Ethereum
sidechain utilizing a Proof of Stake consensus algorithm. By anchoring MadNetwork into
an Ethereum smart contract system, those same properties that otherwise make Ethereum
a difficult technology in the enterprise setting may be leveraged for the benefit of creating
a more secure system. These benefits include the ability to codify complex governance and
fail-safe mechanisms that would otherwise be incredibly difficult in the stand-alone Proof of
Stake setting.

MadNetwork has been designed to facilitate building a fully-auditable PKI that allows
for efficient revocation as well as compact proofs of certificate non-revocation. This system
has also been built to allow proofs of the state of the sidechain to be verified within the
Ethereum virtual machine. Our hope is that, outside of the industry partners we are already
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building solutions for, other members of the Ethereum ecosystem may also leverage this
technology to support their own projects. If this were to occur, it would allow what is the
effective equivalent of smart contract state cold storage to be leveraged within the Ethereum
blockchain. This would ultimately help address some of the very scaling issues we experienced
while using Ethereum in the past.

3 Audience

This paper is intended for consumption by individuals that have a non-introductory un-
derstanding of blockchain systems. Although the best effort has been made to allow the
contents of this paper to be communicated in a comprehensible manner, a full description
of all fundamental concepts has been omitted for brevity. Thus, the reader should under-
stand the general operation of blockchain systems. Specifically, the reader should be familiar
with UTXO-based systems such as Bitcoin and account-based systems such as Ethereum.
A complete understanding of cryptography is not necessary for the main body of this doc-
ument, but an understanding of digital signatures is required. Knowledge of cryptographic
hash functions is assumed. Further, the reader should be aware of threshold cryptosystem
capable signatures such as BLS [6]. The academic treatment of these operations has been
left for the technical appendices.

4 Paper Organization

This paper has been organized as a bottom up approach to the formation of our system. We
have elected to explain the operation in this way because the system has been engineered to
be largely ignorant of the operations at layers above and below a given primitive. Thus, our
system allows application logic to change while preserving the consensus mechanisms. The
system also allows the consensus mechanism to be changed while preserving the application
logic. Due to this design, the system is most easily digested by building it in layers of
complexity.

The first sections pertain to the encoding of messages within the system. The next section
addresses the operation of transaction processing. The section following gives insight into
the synchronization and how history may be safely pruned from the system. Following these
sections the consensus algorithm itself is covered in full detail. The networking stack is then
addressed to describe the communication between nodes, based on the consensus algorithm.
Finally, the economics of the system are covered.

The treatment of these topics is not performed in a technical manner in the body of the
paper proper, aside from the proof of the consensus algorithm. This choice was made because
the consensus proof is far less technical than the cryptography of the system, and may be
understood by the intended audience of this paper. The formal treatment of cryptographic
operation has been performed in the technical addendum of this paper; see Appendix C.
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5 Canonical Object Encoding

As with any blockchain system, a canonical encoding of objects and messages is required
to allow validation of cryptographic signatures across systems. Rather than focus time on
solving the problem of building a canonical encoding, we elected to select an existing robust
encoding mechanism. This allowed us to focus more time on difficult problems that are
more relevant to our direct intent. This also allowed the system to be replicated in other
programming languages more readily by selecting a cross language encoding mechanism.

In order to achieve these goals, Cap’n Proto has been selected as the canonical serial-
ization format. For those readers who may be unfamiliar with Cap’n Proto, this protocol
was built by the same engineer that designed Protobufs for Google. The most important
difference between Protobufs and Cap’n Proto, for the MadNetwork application, is the fact
that all Cap’n Proto objects have a canonical encoding that is preserved even under additive
changes of the object definitions [25]. This protocol has been ported to many languages and
has been used in production systems by enterprise companies such as CloudFlare [26]. This
protocol is only used for the serialization of objects and our system does not integrate any
of the RPC mechanisms associated with the Cap’n Proto specification.

The selection of this encoding scheme is important to the following sections. It influenced
the manner in which objects have been constructed to reflect the operation of the encoding
scheme. This may be seen in the composition of objects to allow complex cryptographic
proofs to be formed in an elegant manner.

6 Transactions

6.1 Overview
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Figure 1: Transaction Object Primitives

MadNetwork operates on a UTXO model that has many similarities to the Bitcoin block-
chain. The divergence from the Bitcoin system is based on an attempt to simplify the rules
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surrounding transaction validation. Rather than integrate a scripting language, MadNet-
work uses object specific validation logic. What this allows is a more efficient verification
algorithm of pending transactions as well as more granular proofs with respect to blockchain
state.

In the MadNetwork system, version numbers are not required at the transaction level. In
the event that additional functionality is desired, new objects may be created to accommo-
date such changes and the validation of such objects may be treated as largely independent
from the validation logic of prior assumptions. Thus updates to the protocol are purely
additive modifications. This choice was made based on the desire to build a system that is
resilient to the fact that it will require many years of continuous uptime.

6.2 The Transaction Object

A transaction is composed of two top level fields. These top level fields are vectors of objects.
The first vector, Vin, contains a vector of TxIn objects. The second vector, Vout, contains a
vector of UTXO objects. A UTXO object must contain only one element from the mutually
exclusive set of allowed UTXO types. These vectors are limited to 256 elements each and a
transaction is limited to a total of 3 megabytes max. TxIn objects and UTXOs will be more
fully covered in the following sections.

The operation of concern at the Transaction Object level is the mechanism by which a
transaction hash may be formed. As may be seen above, every element of Vin and Vout
contains a PreImage type as the last element in the object hierarchy. The PreImage objects
define the protected parameters of a transaction. In order to ensure that the process of
transaction signing is secure, each signed object must be immutably bound to the collection
of input and output objects. This binding is done through the process of PreImage hashing.
The hashing of PreImage objects allows the formation of the TxHash value. The full details
of this operation will follow shortly.

Once a TxHash has been formed it may be injected into the appropriate layer of all
Vin and Vout objects. For all signed objects, the TxHash is injected into a Linker object.
The canonical encoding of these Linker objects are what is signed for proof of possession of
an identified public key as the owner of a UTXO. For all unsigned objects, the TxHash is
injected into the top layer of the object hierarchy. This ultimately ensures protection against
separation of the signature from the intended action of the signer while also protecting against
the known transaction malleability attacks found in early versions of the Bitcoin Protocol.
In order to provide more clarity around transaction hashing, the operation, in detail, follows.
This example will utilize the TxIn object seen in the diagram above and speak about UTXO
objects in a generalized manner.

Before an explanation of the mechanics of TxHashing may be explained two operations
must be defined. First, the concept of a UTXOID shall be explained. Then the pseudoUTX-
OID shall be defined.

A UTXO may be identified by its UTXOID. A UTXOID is created by hashing the
concatenation of the TxHash that creates the UTXO and the Vout index at which the
UTXO was created. MadNetwork enforces the assumption that there may never be two
UTXO objects that exist at the same time that are referenced by the same UTXOID. This
requirement is observed through the use of the StateTrie, which is covered more thoroughly
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in other sections of this paper. More formally:

idxBytes := uint32ToBigEndianBytes(idx)

UTXOID := Keccak256(txHash||idxBytes)

The pseudoUTXOID, for a given UTXO, may be formed as follows:

idxBytes := uint32ToBigEndianBytes(idx)

preImageHash := Keccak256(PreImage)

pseudoUTXOID := Keccak256(preImageHash||idxBytes)

The operational explanation of TxHash formation may now begin. Each TxIn object is
composed of three layers. The first layer is the TxIn object itself. The first layer carries two
fields. The first field is the TXInLinker and the second field is the signature of the canonical
encoding of the TXInLinker. The second layer is the TXInLinker. The TXInLinker provides
an intermediate layer such that the transaction hash may be injected into the object. The
second layer contains two fields. The first field is the TXInPreImage and the second field is
the TxHash. The third layer is the TXInPreImage. This object codifies the UTXO being
consumed through inclusion of the ConsumedTxHash field and the ConsumedTxIdx field.
This hierarchy is also constructed on the UTXO objects found in Vout.

This topology allows for each PreImage layer of the transaction inputs and outputs to be
hashed concurrently. Each of these hashes is then inserted into a Compact Sparse Merkle Trie
at a location defined by the type of object. The resulting CSMT root hash is the TxHash.
For TxIn objects, this location is the UTXOID of the consumed UTXO and the value is the
hash of the TxIn PreImage. For TxOut objects, the location is the pseudoUTXOID and the
value is the hash of the object PreImage. Because a TxHash is not available to form the
proper UTXOID of the object, a pseudoUTXOID is used instead.

Once the TxHash is computed, each object from Vin and Vout has the TxHash injected
and all objects that must be signed are signed after this injection. This provides the means
to immutably link a signature to a TxHash.

Unlike in Bitcoin, the sum of a Transactions input values must be equal to the sum of a
Transactions output values. At this time, transaction fees are paid through the cleanup of
stale state. Thus no direct mechanism to pay transaction fees is provided except through ex-
plicitly naming a given validator or sending a UTXO to the validator set using the validators
Group Key. The Group Key is a negotiated BLS key under a threshold cryptosystem. This
threshold cryptosystem will be explained more fully in the consensus algorithm description.
Due to this threshold cryptosystem, the group of validators may coordinate to distribute
mining fees sent to the Group Key. The authors of this paper are aware of the potential for
an attack against the storage of the system due to this design choice. This attack is similar
in nature to the DoS attacks on Ethereum that occurred due to malicious transactions eating
computation time. In future versions of the protocol this attack may be trivially mitigated
through several mechanisms. In the current implementation these attacks may be mitigated
as well. This protection is as follows.
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If it is observed that an attack is ongoing, the validators may refuse to mine any trans-
action that does not transfer value to the validator set. This is possible through the use
of threshold cryptography that will be covered in the consensus section of this paper. The
option that may be included in future versions is to allow a UTXO to be formed that grants
the miner the ability to consume the reward directly or inject a key so the UTXO may be
consumed later. This has not been implemented at this time in order to simplify the process
of transaction processing. Currently, the system mandates that all consumed objects must
exist prior to a transaction. The system also requires that all transactions in a block do not
reference any object that any other transaction has already consumed. Lastly, all objects
in all transactions of a block must exist prior to the block being mined. These assumptions
protect the atomicity of state transitions, but this atomicity may be preserved with more
complex handling of transaction fees as an edge case.

6.3 The TxIn Object

TxInPreImage

ChainID

ConsumedTxHash

ConsumedIdx

TxInLinker

TxInPreImage

TxHash

TxIn

TxInLinker

Signature

Figure 2: TxIn Object

A TxIn object allows a UTXO to be consumed by specifying the TxHash of the Transaction
in which the UTXO was formed and the index at which the UTXO was created in the
Vout vector. All TxIn objects must be signed in order to prove possession of the private
key generated during object creation. MadNetwork allows several pending transactions to
reference the same UTXO for consumption at a time through the utilization of an LRU-
based reference counting system. A TxIn may not reference a UTXO created in the same
transaction or block. As previously covered, this may be changed in future versions to allow
the edge case of mining fees. All TxIn objects must point to either a known UTXO or a
valid unspent deposit from Ethereum.

In addition to consumption of MadNetwork UTXO objects, the TxIn object may also
cause the consumption of a Deposit from the Ethereum blockchain. Deposits into the
sidechain may be triggered by any token holder on the Ethereum blockchain. These deposits
become virtual UTXOs in the sidechain after a ten block wait. This process is controlled by a
deposit smart contract on the Ethereum blockchain. Internal to this deposit contract there
exists a monotonically increasing counter. For each deposit, this counter is incremented.
When a deposit is made, a hash is passed into the contract. This hash is the hash of the
public key that may be used to claim the deposit on the sidechain. The deposit itself will
cause the associated tokens to be burned on the Ethereum blockchain. This action causes
an event to be emitted that is observed by the miners of the sidechain. Once this deposit
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has matured for at least 10 blocks, it will become available for use in the sidechain. The
deposit may be consumed by referencing the deposit in a TxIn object. This reference may
be formed by setting the consumedTxIdx field of the TxIn object to the max value of uint32,
setting the txHash to the big endian uint256 equivalent of the counter at the time of the
deposit, and signing with the same private key as was used to create the public key hash
specified in the deposit contract invocation. In order to prevent a deposit from being double
spent, a permanent record of having consumed the deposit is tracked in the State Trie of
the sidechain. This tracking of state is permanent and allows the validators to not perform
any acknowledgment operations of a deposit having been spent against the deposit smart
contract.

6.4 The DataStore Object
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Figure 3: Data Store Object

A DataStore object is a type of UTXO. This is the fundamental mechanism by which data
may be stored in MadNetwork. Rather than storing data in an account-based relationship,
we selected the use of a UTXO-based storage system to allow for a more traditional atomic
commitment mechanism as is readily available in database technologies in general. This
capability allows a single transaction to consume many DataStore objects and rewrite these
objects in an atomic manner. A DataStore is bound to a single epoch, where an epoch is
a bounded division of blocks in MadNetwork. These divisions are deterministic and based
on simple modulo operations. The full specification of an epoch will be handled later in
this paper. Any transaction containing a DataStore must be included in the named epoch
of generation. This constraint is manifest through the rent-based data storage mechanisms
employed by MadNet. In addition to the actual data being stored, the deposit, the chainID,
the output index, the epoch of issuance, and the owner, each DataStore contains an index.
The index allows a datastore to be referenced as a named element in the virtual namespace
defined by the hash of the public key of the DataStore signer. This index is built through a
reference system in the database behind the application, and this reference system enforces
uniqueness of an index in a given namespace. This reference system allows O(1) access to an
element in a namespace. There also exists an index that allows all objects in a namespace
to be traversed in O(n) and O(log n) search may be implemented in future versions of this
system without impacting consensus.
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6.5 The ValueStore Object
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Figure 4: Value Store Object

A ValueStore allows for the conveyance of MadNetwork tokens between accounts in the
MadNetwork and provides a mechanism for generating a change output from a transaction.
The named owner is the only party that may consume a ValueStore object. All value stores
are also indexed according to the owner by default. This allows iteration of UTXO objects for
the purpose of simplifying wallet software. These objects are indexed in either smallest value
to largest value and may be iterated in forward and reverse. This indexing allows efficient
solutions of the knapsack problem using greedy algorithms. These greedy algorithms are
not included in the logic of the node at this time. The inclusion of this index is intended to
facilitate the minimization of UTXO dust, as it is named in the Bitcoin context.

6.6 The AtomicSwap Object
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Figure 5: Atomic Swap Object

Withdrawals from the sidechain occur through atomic swaps only. This decision was made
to dramatically reduce the complexity of the protocol. Since the primary utility of the
underlying system is to write data into the sidechain, and tokens are destroyed when such
an event occurs, this simplification reflects the intent of the system and allows the amount
of state that must be tracked to be dramatically reduced. In this way the sidechain acts as
a universal sink in the flow of tokens.

The manner in which atomic swaps are facilitated is through the native AtomicSwap
object. This object acts as a time-locked hash contract where time is measured in epoch
boundaries. The safest manner in which to negotiate an atomic swap is for the sidechain
party to be the initial actor. This pattern is also convenient because it allows an offer
contract to exist in the Ethereum EVM that orders may be matched against, and MadNet
was intentionally not built for complex smart contract operations of this nature.
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At the time of creation, any value stored in the AtomicSwap is locked. During the time
between issuedAt and exp, the partner may claim the value stored in the AtomicSwap by
revealing the preImage of the hashlock. The only party that may claim an AtomicSwap
before exp is the partner and only with a proof of knowledge of the hashlock-preimage. If
the AtomicSwap is not consumed before exp, any value stored in the AtomicSwap will revert
to owner. Thus, only the partner or owner may consume this UTXO type.

The operational flow is as follows. For the purpose of this explanation Mike will hold
MadNetwork Tokens in the MadNetwork itself and Erin will hold Ethereum in the EVM.
The protocol may begin once Mike and Erin are aware of each other’s desire to exchange,
an exchange rate has been set, Mike has the hash of Erin’s public key that she will use in
MadNetwork, and Erin has Mike’s Account he will use in Ethereum.

First, Mike will form a Transaction that transfers the required value into an AtomicSwap
object on the MadNetwork and sets the partner value to the hash of Erin’s public key. Mike
will set the exp at least three Epochs into the future, and Mike will hash a random value
to act as the preimage of the hashlock. The random value Mike selects must be a 32 byte
object. This constraint is enforced by the MadNetwork AtomicSwap object as well as by
the Ethereum AtomicSwapContract. This requirement is to prevent maliciously large values
from being selected.

Mike may then inform Erin of the transaction hash, or Erin may watch for a transaction
with her public key hash. Once Erin observes the transaction, she may form an Ethereum
transaction by calling the AtomicSwapContract in the EVM. This contract should have
the same hashlock as Mike’s transaction and the expiration of this offer should be at least
one Epoch shorter than the exp used in Mike’s transaction. Note that if Mike chose an
expiration that is less than three epochs into the future, Erin should abort the protocol
and not form the offer in the AtomicSwapContract. A failure to observe this requirement
may result in the loss of assets due to a race condition. Specifically, Mike could wait until
immediately prior to expiration of the AtomicSwapContract object to reveal the hashlock.
If both the AtomicSwap object and the AtomicSwapContract expire at the same time, there
are no guarantees Erin would be able to submit a transaction before the expiration of the
AtomicSwap object. This would allow Mike to recover Erin’s funds without Erin recovering
anything from Mike.

Pending that both Mike and Erin have constructed the appropriate objects with all
constraints met, the finalization may now commence. First, Mike must claim his value in
the EVM by sending a transaction from the specified address that he previously claimed.
In this transaction Mike must reveal the preimage of his hashlock in order to claim the
funds. Once Erin observes this transaction she will know the hashlock preimage. Given the
hashlock preimage Erin may claim her value in the MadNetwork by forming a transaction
that spends the AtomicSwap object.

In the event that Mike creates the AtomicSwap object and Erin does not reciprocate or
forms the AtomicSwapContract with incorrect parameters, Mike may recover his funds after
the AtomicSwap object has expired. Similarly, if Mike forms the AtomicSwap object with
incorrect parameters or never claims the funds from the AtomicSwapContract, Erin may
recover her funds after the expiration of the AtomicSwapContract.
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6.7 Account Abstraction

Transaction signing in MadNetwork may take several forms and the signature itself may
be generated under two allowed Elliptic Curves. The first curve that may be utilized is
Secp256k1. Every Secp256k1 signature must be an Ethereum-compliant ECDSA signature.
The second curve is the BN256 Elliptic Curve as specified in the Ethereum Yellow Paper.
All BN256 signatures must sign transactions using BLS with the defined hash to curve
operations as seen in the technical addendum. These BLS signatures require the public
key of the signer to be concatenated with the value being hashed. This does allow safe
aggregation of the signatures, but this ability is not leveraged at this time. BLS signatures
must also prepend the public key to the signature itself for validation purposes. In the
event that a multisignature account is desired, BLS signatures may be used with off chain
coordination of key negotiation. Lower setup complexity of BLS multisignatures may be
included in the future with ease.

In order to build the system of account abstraction, the owner field of an object indicates
what curve is being used by setting the first byte of the owner field. Each object type defined
above also corresponds to a single signature verification algorithm per curve that may be
used to sign each object. This strategy allows for four signature verification operations at
this time and may be extended to many more as necessary for additional functionality.

The first form is a public key hash signature verification algorithm. This type of signature
verification requires that the signature be valid per the specified curve and data, and that the
hash of the public key that generated the signature matches the owner field from byte one
to end using zero index counting. This algorithm is the required algorithm for all value store
objects at this time, and may use either BLS or ECDSA type signatures. This operation is
only allowed for the ValueStore objects at this time.

The second form is a hashed timelock signature verification algorithm. This signature
verification algorithm is only allowed to be used with ECDSA at this time and this signature
type is only allowed to be used with the AtomicSwap object at this time. In this signature
verification algorithm, the hashlock preimage must prepend the signature.

The third form is a transparent signature verification algorithm, as is required by a
datastore object. This signature verification algorithm requires that the owner field is itself
a signature and that the signature that consumes the object with this signature verification
type be a different signature using the same public key as the original signature. This
algorithm allows both ECDSA and BLS type signatures at this time. In the event the
signatures are BLS signatures, the public key must be prepended to the signature. The
ECDSA implementation used is the Ethereum compliant recoverable ECDSA, so the public
key is not required to be prepended. This signature verification mechanism is the only
type allowed for DataStore objects at this time and this mechanism may only be used
with DataStore objects. The reason for requiring this mechanism is to allow the proof of
possession of the signing key at the time the object is constructed. This is required due to
the namespaced indexing that DataStore objects enforce. For instance, Bob may not write
into the namespace of Alice without knowledge of the private key of Alice.
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7 Consensus

7.1 Diagrams
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Figure 6: Consensus Object Primitives

7.2 Definitions

Validator A validator is a node that has placed a stake in the Ethereum staking smart
contract, successfully negotiated a group key, and is actively participating in
block creation on MadNetwork. Validators coordinate the generation of new
blocks through a Byzantine Fault Tolerant consensus algorithm.

Height The number of blocks that are in the blockchain starting from index one.

BlockHash A cryptographic hash of the canonical encoding of the BClaims object.

ChainID A unique uint32 value used to identify a particular instantiation of the MadNet-
work blockchain software.
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Round A round is defined by an iteration of the consensus protocol in which a single
validator may be considered the leader. For each change of leader that occurs
without a new block being produced, the round is incremented. The round starts
at index one and is monotonically increasing. Upon a new block being produced,
the round is reset to one.

SigShare This is a signature of an object under a BLS threshold cryptosystem.

SigGroup This is the aggregated signature formed by a threshold number of SigShares.

Signature Signatures are validator signatures under the secp256k1 curve using the Ethereum
compliant recoverable ECDSA algorithm.

7.3 Cryptography

We use Elliptic Curve Cryptography within our system. Specifically, we use the curves
Secp256k1 and BN256-Eth. Secp256k1 is the same elliptic curve used by Bitcoin and
Ethereum for their public key cryptography. BN256-Eth is the pairing-friendly elliptic curve
from the Ethereum blockchain which is convenient for constructing group signatures. All
validators are required to have an Ethereum account and so they have a Secp256k1 public
key. During the distributed key generation process, a master public key (a public key for
the entire group) is constructed and split amongst the participants. Each member is able
to compute a partial signature, and these partial signatures are able to be combined into a
group signature. A more in-depth discussion about cryptography is relegated to Appendix C.

7.4 Storage and Data Persistence

In order to ensure all information is stored in a system that is efficient, crash resilient, and
allows transactional updates, BadgerDB was selected as the backing storage mechanism for
the system. The consensus mechanism may be built on other key value stores in a similar
manner, but the choice of Golang as our programming language made BadgerDB an optimal
choice for an embedded key value store. BadgerDB also supports PubSub systems, allows
namespacing of objects through key prefixes, ordered/key only iteration, and many other
useful primitives.

In the context of the consensus algorithm, the crash resilience and PubSub mechanisms
have been leveraged to simplify the problems surrounding accidental violations of validator
protocol. These accidental violations are most likely to occur in other systems when a
crash occurs as a value is being written to a database and also being transmitted to peers.
Such crash conditions could allow an otherwise honest party to act in a contradictory manner
through nothing more than a crash problem coupled to a race condition. In order to mitigate
such problems, we leverage the PubSub system of BadgerDB to send messages out to peers
only after they have been verified as having been flushed to the file system. This decoupling
also allows the simplification of the consensus algorithm logic by not requiring complex
locking and chaining of operations.

Future versions of the node software will include the ability to coordinate data persistence
in a master slave failover architecture for validator nodes. This will mitigate the previously
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described race condition under the extended assumption that multiple validators are being
run in a failover configuration and both validators use the same signing key. This race
condition caused the first slashing event on the Cosmos Hub, so it is worth addressing.
Fortunately the same PubSub system may be leveraged to facilitate this action painlessly.
This may be implemented by forcing the master to write each message to the database at
a location that causes the PubSub system to send a message to the slave. The system may
then wait for an ack response from the slave that specifies the key of the value that has
been persisted to disk. Another thread in the master process may then write this same
value to a location that is monitored by the PubSub system for transmission as gossip to
other peers. Through this simple modification a single master slave configuration may be
built that ensures atomic coordination between the master and slave while sacrificing a small
latency in network operation.

7.5 Protocol Overview

The MadNetwork consensus protocol is based on a modified form of Tendermint. In our
implementation we utilize the PaceMaker concept of HotStuff in order to create stronger
bounds on the mean time to consensus. This is implemented as the RCert system described
below. Unlike Tendermint, we do not allow transitions between rounds to occur as the
default response to a timeout. In order to exit a round, the system requires at least threshold
messages have been observed in each intermediate state. A validator may also exit a round
or height, with constraints, if a proof of consensus is observed for a higher round/block. The
observation of these threshold messages allows the formation of a group signature under a
threshold signature scheme. This leaves the potential for halting problems to arise under
double proposing in a round, but we have addressed the halting problems through a novel
concept we have named virtual voting. The flow of this protocol is also optimized through
an optimistic fast path that allows termination of the protocol in slightly more than a single
timeout under general consensus. The system does, however, force slower operation under
split votes in order for more state information to be observed before forward progress is
made.

This system is operated as a Proof of Stake sidechain to the Ethereum Blockchain.
This network is governed and secured through the use of smart contracts that exist in the
Ethereum Blockchain. This choice of operations allows the system progress to be governed
by a system that is beyond the control of the validators in the Proof of Stake protocol it-
self. Thus, many complexities around malicious majority attacks may be mitigated either
completely or at least in part.

The system operates on a hierarchical division of time. The measurement of this time
is relative to two systems. The first system is the Ethereum blockchain. The system pro-
tects some actions from occurring until a threshold number of blocks have occurred in the
Ethereum blockchain to prevent attacks that attempt to violate required delays of the system
through pre-arranged message negotiation in secret. The full details of these attacks are not
covered because they have been mitigated, but the basis for these attacks is apparent in the
section describing validator stake withdrawal operations.

The second system of time measurement is local blocks within the Mad Network itself.
Large groups of these blocks form Epochs. An epoch is defined for two purposes. First, it
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designates a boundary point for recording a snapshot of blockchain state into an Ethereum
smart contract. Second, it provides a logical transition point for the exit and entrance of
new validators.

In order to build the protocol in an auditable manner, a synchronous core algorithm
was designed such that asynchronous messages may be queued for processing. The primary
control loop for the consensus algorithm is a three state system. The system begins in the
unsynchronized state. Once synchronization is complete, the algorithm alternates between
updating local state based on messages observed and collecting messages for processing and
storage.

All network interaction is decoupled from the consensus algorithm proper through the
use of BadgerDB’s native PubSub mechanisms. Thus, a message may never be placed on
the wire without first being recorded in the database. In the following explanation network
communication should be assumed to occur following writes to persistent storage.

Within our architecture each validator maintains a set of linked lists. These lists are
stored in BadgerDB using transactional commitments. This architectural decision was made
in order to provide strong protection against an inadvertent double signing by honest val-
idators.

The validator lists are maintained such that every known validator has a single list
constructed that will remain in the database for two epochs past when a validator is no
longer active. The local node maintains an identical linked list for its own state as well. The
collection of linked lists is instantiated prior to a validator being active or on first detection
of a change of validator set. Each linked list stores a RoundState object that contains a field
for each vote type that is possible in the consensus algorithm. As new rounds occur, a new
RoundState object is built and the previous object is pushed back on the list. In this way
the evidence log and the state storage system may be combined in an elegant manner. The
operation of these queues is as follows.

For each new message received, the message RCert height is compared with the currently
synchronized maximum block height of the local node. If the block height is greater than one
less than the currently synchronized block height, the message is dropped. If the message
passes the height check, the entire message is checked for consistency of formatting and
cryptographic signatures. If any error occurs at this time, the message is dropped. After
this initial validation, the message is dispatched to the consensus algorithms core handler
logic.

The first step of additional validation is performed by loading the remote validator’s
RoundState. If the element for the message type received is newer than the received message,
the message is dropped. If the message is equal in height and round to the element, a
consistency check is performed. If this check fails, it is an indication of a double vote for
a given height/round and thus the value is stored in a way that allows an accusation to be
formed. In this way duplicate messages are dropped, and contradictory messages of equal
height are also caught. In addition to the validation of contradictory messages internal to
a message type, the message is then checked for consistency with the other message types.
These checks include ensuring that a validator does not PreVote and PreVoteNil in the same
round.

Pending the message passes all verification, the message is stored. In addition to up-
dating the RoundState of the peer that signed the message, the local nodes RCert may be
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updated in the next round of local state updates. Specifically, if the RCert of the message
is greater than the locally known RCert and the locally known RCert may be validated
as not conflicting with the peer submitted RCert, an update will occur. This operation is
what drives round/height jumping in the system and prevents deadlocks that may otherwise
occur. If the peer submitted RCert is of a height greater than the local RCert plus one, the
message is stored in the state space of the peer, but the RCert is not stored in the state
space of the local node. In addition to not storing the RCert in the local RCert object, a
signal error is raised causing the local node to change state into synchronization mode. If the
RCert height is only one block height larger than the locally known RCert, the local node
checks the PrevBlock field of the RCert to see if the associated proposal is known. If this
proposal is known, and the local validator agrees that this proposal is valid, the validator
may proceed to the block height associated with the observed RCert.

7.6 The TxRoot

The TxRoot field is a member field of the BClaims object. This field is the root hash of a
Compact Sparse Merkle Trie. The trie is built by first constructing the TxHash values for
all transactions that will be included in the Proposal that contains the given BClaims. The
objects are inserted at the location key that is equal to the TxHash value and the value stored
at this location is the hash of the TxHash itself. This mechanism was selected to build the
trie such that it formed an unordered set for simple proofs of inclusion. This design choice
does mandate that all transactions that use this mechanism must be strongly independent
from each other with respect to modified state. The purpose of this field is to bind the set of
transaction hashes that are associated with a blockheader into a compact form of encoding
that allows for efficient proofs of inclusion and exclusion.

7.7 The StateRoot

The StateRoot field is a member of the BClaims object. This field is equal to the root hash of
the StateTrie after the transactions associated with the Proposal that contains the BClaims
has been processed. The purpose of this object in the BClaims is to allow for snapshot
synchronization of all UTXOs from a known good value. This allows clients to download
only the data that is associated with a snapshot as the start point of synchronization. Once a
trie that represents a snapshot is fully synchronized, a client may begin synchronizing block
headers and transactions. A full explanation of this process will be addressed later.

7.8 The HeaderRoot

The HeaderRoot field is an object of the BClaims object type. This field is the root hash of
a Compact Sparse Merkle Trie that acts as an append only log. The keys in this trie are the
big endian uint256 value of a block height. The values of this trie are the associated block
hash as determined by the key of insertion. Although this choice of insertion does destroy
some efficiency of the underlying Sparse Merkle Trie, this choice was made with the intent of
optimizing Merkle Multi Proofs across ranges of the trie. The purpose of this field is to allow
a peer to request a block header for a specified block number along with a proof of inclusion.
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The basis for this action is to allow a client to request a block header from a known good
snapshot root hash with strong unforgeability of the underlying data. This design choice,
with respect to ordered insertion at the key equal to the block height mandates that the first
block of the network start at index one.

7.9 The RClaims Object

RClaims is an abbreviation for the name Round Certificate Claims. The RClaims object
contains four fields that uniquely define the current state of the consensus algorithm. These
fields are height, round, chainID, and the blockhash of the previous block. An RClaims
object is never transmitted outside of an RCert object.

7.10 The RCert Object

RClaims

ChainID

Height

Round

PrevBlock

RCert

RClaims

SigGroup

Figure 7: RCert Object

RCert is an abbreviation of the name Round Certificate. An RCert object wraps an RClaims
object and contains a signature of the canonical encoding of the RClaims object. The purpose
of the Round Certificate object is to allow compact proof of consensus for a given height and
round.

In order for a Round Certificate signature to be treated as valid, the signature must be a
valid group signature under the GroupKey of the corresponding validator set for the height
specified in the Round Certificates RClaims object. In round one of a given height this is
the SigGroup of the BClaims object from the block header. This is the same requirement of
a BlockHeader signature. Thus, the round one RCert is a proof of the previous blocks hash.
In any higher round of a given height the SigGroup must be of the RClaims object of the
RCert.

The existence of a validly signed RCert implies that at least threshold validators have
provided signatures. This either proves a new block height, in round one, or it proves a new
round has begun in some height. This signature is a compact proof of consensus for the
contents of the RClaims or the block.

7.11 The BClaims Object

BClaims is an abbreviation for Block Claims. The BClaims object encodes the proposed
modifications to chain state in a compact format. The BClaims object is embedded, either
directly or through composition, in the BlockHeader, Proposal, PreVote, PreCommit, and
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NextHeight messages. The BClaims object does not itself carry the transactions that have
been proposed for inclusion in the next block.

7.12 The PClaims Object

PClaims is an abbreviation for Proposal Claims. The PClaims object couples a Round Cer-
tificate to a set of Block Claims. The purpose of this coupling is to prove to any participants
that observe such a message that the validators have progressed to the specified height and
round with the specified previous Block Hash. In this way, a set of malicious validators may
not vote in advance of a round that has yet not begun according to the rules of consensus.
The PClaims object is never directly transmitted over the wire. The PClaims object is
always an embedded subobject of an actual message type.

7.13 The Proposal Object

BClaims

ChainID

Height

Round

PrevBlock

TxCount

TxRoot

StateRoot

HeaderRoot

RClaims

ChainID

Height

Round

PrevBlock

RCert

RClaims

SigGroup

Proposal

PClaims

Signature

TxHshLst

PClaims

BClaims

RCert

Figure 8: Proposal Object

The Proposal object allows a validator to propose a set of changes be applied to the block-
chain as a transactional commitment. Only one proposal may be validly formed in a round.
This fact is an implied constraint based on two requirements of the system. First, there may
only be one validator who is the elected proposer for a given round. Second, a valid proposer
will only propose one value in any round.

The proposal object contains a list of all transaction hashes that should be included in
the calculation of the resulting block parameters as described by the embedded BClaims
object of a given proposal. The acquisition of the actual transaction data is handled by
an asynchronous background operation that queries the other validators for any unknown
transaction hash. If a validator is unable to obtain the associated data for an unknown
transaction, the validator will never vote for such a Proposal.
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7.14 The PreVote Object
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Figure 9: PreVote Object

The PreVote object is sent by a validator to indicate an agreement with a proposal as the
next valid state transition. Upon receipt of a PreVote, the nested Proposal may be extracted
and applied to the state of the appropriate validator if the Proposal has not otherwise been
observed already. A valid validator will not PreVote more than one Proposal in any round.
A valid validator will not PreVote and PreVoteNil in the same round.

7.15 The PreVoteNil Object
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Figure 10: PreVoteNil Object

A PreVoteNil object is sent by a validator to indicate that no valid proposal has been observed
before the ProposalTimeout or that the validator is otherwise locked on a competing value.
A valid validator will not PreVote and PreVoteNil in the same round. The validator does
not specify a proposal in a PreVoteNil; rather, the embedded Round Certificate acts as an
identifier for a particular round and height. This indicator may be treated as a blanket
statement for all Proposals seen in a given round.
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7.16 The PreCommit Object
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Figure 11: PreCommit Object

A PreCommit object is sent by a validator to indicate that the validator believes there is
sufficient evidence to indicate that the associated proposal will be accepted as the next state
transition. A validator may not form a valid PreCommit without having first seen at least
threshold total validators have PreVoted for the specified Proposal in the same round. This
requirement is enforced by appending the associated signatures from the required number of
PreVotes to the PreCommit. A valid validator may not PreCommit more than one Proposal
in a round. A valid validator will not PreCommit for a Proposal that it has also cast a
PreVoteNil for in the same round. A validator will not PreCommit for a value that it has
not cast a PreVote for in the same round.

7.17 The PreCommitNil Object
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Figure 12: PreCommitNil Object

The PreCommitNil object is sent by a validator to indicate that it has not observed enough
PreVotes to ensure a valid state transition may be created in the current round. A valid
validator will not PreCommit and PreCommitNil in the same round.
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7.18 The NextRound Object
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Figure 13: NextRound Object

The NextRound object is issued at the last phase of a round by any validator that does not
have knowledge of consensus for the next block. This object contains two signatures. The
first signature is a secp256k1 signature of the NRClaims object. The second signature is a
BLS signature under the group share of the validator threshold cryptosystem. This second
signature signs the RClaims object of the NRClaims object. This RClaims object contains
the same parameters as the RCert for the current round, except the Round field has been
incremented. After observing a threshold number of NextRound messages, a new RCert may
be formed by aggregating the BLS signatures. This provides evidence of a consensus to enter
a new round.

7.19 The NextHeight Object
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Figure 14: NextHeight Object
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The NextHeight object is sent by a validator that has proof of threshold consensus in both
the PreVote and PreCommit phases of operation. The object carries proof of this knowledge
by appending the PreCommit signatures into the message. The NextHeight message carries
two signatures. The first signature is a signature under secp256k1 ECDSA. The second
signature is a signature under the threshold BLS key of the validator group. The secp256k1
key signs the canonical hash of the NHClaims objects. The BLS signature is a signature
of the BClaims object. In this way, once a threshold number of NextHeight messages are
formed, two objects may be created. The first object is the BlockHeader. The second object
is the round one RCert for the first round of the next block height. These objects are formed
by creating the SigGroup object through aggregation of the SigShare objects from threshold
NextHeight objects.

7.20 The BlockHeader Object
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Figure 15: BlockHeader Object

A BlockHeader object may be formed following the successful completion of a round. This
object may be formed by aggregating the BLS signatures of threshold valid NextHeight
messages. The creation of a BlockHeader is an indication of consensus among the validators
and the BClaims described state transition.

7.21 Validators

A validator is an entity that performs two actions. First, a validator must register as an entity
that wishes to become a validator using a smart contract in the Ethereum Blockchain. This
contract requires a deposit of stake at the time of this registration. The act of registering
queues the validator up to become a new validator in the next epoch transition if a slot
is available. The maximum number of slots the system may accommodate is 256, but the
actual system will likely be constrained to far less than this limit in order to minimize key
negotiation costs associated with the formation of the threshold BLS signatures needed for
signing BlockHeaders and RCert objects.

Once a slot is available for the newly registered entity the second requirement comes
into force. This requirement is that the entity is running a validating node in the network.
This requirement is observed during the negotiation of the group key for the validators.
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Full details may be seen in the technical addendum for how this key is negotiated and how
unresponsive validators are removed.

The job of the validators is to mine new blocks into the chain and enforce the rules of
consensus.

7.22 SnapShots

A snapshot is performed by writing a block header into the Ethereum blockchain. The
block header is verified as validly signed under the group key of the validators and all fields
are stored. This value may be changed within one epoch if an invalid state transition may
be proven. This is not possible unless greater than two thirds of the validators collude to
violate the rules of consensus. In the event that this does occur, the guilty validators may
be identified through the Ethereum compliant secp256k1 ECDSA signatures used to sign
every consensus message type. If no accusations are formed and proven within the epoch
boundary, the snapshot becomes canonical.

7.23 Withdrawing From Validation

A validator may request to be withdrawn from a role as a validator at any time. The validator
will not be available for actual withdrawal of funds until three epochs in the future, but the
validator may not sign any additional consensus messages at the termination of the epoch in
which the request was made. This down time guards against malicious validators performing
an attack and then withdrawing before an accusation may be formed.

7.24 Leader Election

At this time the leader election algorithm is based on a simple round robin algorithm. This
round robin algorithm does not track state across block heights. Specifically the algorithm
operates on the sum of the blockheight and round modulo the number of validators. A single
validator is selected from a common array of validators that every validator has available to
them through the coordination of state provided by the Ethereum blockchain.

7.25 Virtual Votes

The concept of a virtual vote is integral to the security of the MadNetwork consensus algo-
rithm. We define a virtual vote as a vote that has been cast based on the indirect observation
of cryptographically-secure evidence. Although the message passing protocol of the consen-
sus algorithm may seem overly verbose on first inspection, there is good reason.

Due to the fact that all message objects that allow the protocol to advance in height
are objects that directly embed the Proposal they reference, and this Proposal must be
cryptographically-signed, any party who observes a PreVote, PreCommit, or NextHeight
message may extract the underlying Proposal and apply this Proposal against the state of
the validator that formed the Proposal. The result of this operation may be one of three
possible outcomes.
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In the first case, the Proposal may be otherwise already known, and no action outside
the normal tracking of messages is necessary.

In the second case, the local node may not have otherwise observed any valid Proposal
from the validator that cast the Proposal. If this is the case, the message may be applied to
the validator that formed the Proposal and the PreVote, PreCommit, or NextHeight message
may be attributed to the validator that formed the actual message.

In the third case, the Proposal may be in conflict with an already known proposal from
the associated validator for the same height and round. The handling of this case forms
the basis for one of the most important security assumptions of the system: no conflicting
PreVotes, PreCommits, or Proposals may be stored in the state space of a single validator
in any round such that these conflicting votes may be counted toward consensus.

If the Proposal is in conflict, the Proposal will be discarded. In addition to discarding
the Proposal, for the message types of PreVote and PreCommit, the validator that signed
the PreVote or PreCommit will have a virtual PreVoteNil or PreCommitNil tracked for the
purposes of consensus. This virtual Nil vote is a placeholder to indicate that the validator
that signed the PreVote or PreCommit is not capable of voting in agreement with the local
node. If the message that contained the Proposal is a NextHeight message, the NextHeight is
followed if the local node may validate the Proposal and has not otherwise already performed
a NextHeight operation for a conflicting value in the same height. If the local node has
previously performed a NextHeight operation that is in conflict, this node must follow the
NextHeight it has already locked. This should never be possible with less than two thirds
malicious validators, but this situation may be mitigated by performing accusations against
the malicious parties in the Ethereum smart contract system. Since all consensus messages
are signed in Ethereum compliant ECDSA, the proof of a double proposal or a proof of
signature for an out-of-turn/invalid proposal is guaranteed to be possible. Thus, the system
will halt for a time but may re-enter consensus in the next block by forcing the assumed
value of an empty block for the height at which the accusation was formed.

These operations are necessary because the consensus protocol requires a threshold num-
ber of votes before progress may be made through the steps of the protocol. Simply discarding
these messages with no additional action would cause the protocol to halt. Tracking these
messages would add many additional layers of complexity to the protocol. Thus we have
selected to take the course of simplification.

In summary, the tracking of virtual votes performs three functions. First, this logic
prevents the system from ever allowing two conflicting Proposal messages to ever be stored
in the database of a single node. Second, because this operation is performed for all PreVote
and PreCommit message types, this prevents any conflicting votes from ever influencing the
counting of local votes that contribute to the addition of blocks. Third, because a virtual Nil
vote may be assigned in the presence of a conflicting vote, the algorithm may be prevented
from halting due to missing votes.

7.26 Protocol States

The consensus algorithm has been divided into discrete states. The current state of the
system is determined by loading all known messages sent by the local node as well as sec-
ondary information about the block height, round number, and authorized validators. This
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operation is performed once for each iteration of the consensus algorithm and this data is
loaded directly from the database under a protected view. An explanation of the states and
the conditions that determine a local nodes current state will be covered shortly.

The general flow of the algorithm is to attempt consensus for a fixed number of times at
each block height. In each block height there may be many attempts and these attempts are
named rounds. If the maximum number of rounds is reached without consensus, the system
defaults to mining an empty block to ensure forward progress. The flow of each round is as
follows.

Each round starts with a Proposal phase where one validator forms a proposal for the
next block. This message is transmitted to all peers and each peer gossips the message to
all other peers. This is a flood event that is designed to prevent split view attacks. This
gossip halts at any node that has already gossiped the same message. This phase ends at
the termination of a timeout. At the termination of the Proposal phase each validator will
PreVote or PreVoteNil. This is the PreVote phase that may optimistically end before a
timeout only if a threshold consensus is reached. Otherwise, the system will force a timeout
wait before entering the next phase. In all cases no forward progress can be made without
at least threshold votes having been observed. The next phase is the PreCommit phase in
which a validator may either PreCommit or PreCommitNil. This phase is also constrained
by optimistic threshold progress the same as the PreVote phase. Lastly is the commitment
phase in which round consensus is determined. In this phase a validator may vote for a new
round through a NextRound message or a new block through a NextHeight message. The
full details are covered shortly.

The sections below will not explicitly discuss the process of gossip since it may be treated
as independent of the core operation of the consensus algorithm for this portion of the
analysis.

The approach taken to defining the consensus algorithm is far more verbose than many
approaches normally taken. The justification for this verbosity is that although many papers
describe what is claimed to be a convergent system, this is often not the case. Rather than
leave a possible transition as not fully defined, we have chosen to fully expand the branch
logic in the following discussion. We were able to fully cover the truth table of possible
optionality by limiting the number of branch points. The basis for the proof of validity of
this algorithm follows this section.

The main loop of the consensus algorithm is represented in pseudocode in Alg. 1. For
simplicity, the algorithm waits for the timeouts to occur. In practice, if we reach consensus
before the timeout, the algorithm proceeds to the next stage.

7.26.1 PendingProposal

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• ProposalStep
• PendingProposal
• PendingPreVote
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Algorithm 1 Main loop of MadNet Consensus algorithm.

1: function MainBlockLoop()
2: for r = 1; r ≤ DeadBlockRound; r++ do
3: if r = DeadBlockRound then
4: DeadBlockRoundProcedure()
5: break
6: end if
7: nhBool = RegularRoundProcedure()
8: if nhBool then
9: break . Proceed to the next block height

10: end if
11: end for
12: return
13: end function

Algorithm 2 DeadBlockRound procedure

1: function DeadBlockRoundProcedure()
2: PreVote(EmptyBlock)
3: Wait until EmptyBlockPreVotes ≥ Threshold
4: PreCommit(EmptyBlock)
5: Wait until EmptyBlockPreCommits ≥ Threshold
6: NextHeight(EmptyBlock)
7: return
8: end function

Algorithm 3 Regular Round procedure

1: function RegularRoundProcedure()
2: doPendingProposalStep()
3: Wait for ProposalTimeout
4: CurProp,LocalPreVote = doPendingPreVoteStep()
5: Wait for PreVoteTimeout
6: doPendingPreCommitStep(CurProp, LocalPreVote)
7: Wait for PreCommitTimeout
8: nhBool = doPendingNextStep(CurProp)
9: return nhBool

10: end function
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Algorithm 4 Proposal procedure

1: function doPendingProposalStep()
2: if IsProposer() then
3: if !LockedValueCurrent() ∧ !ValidValueCurrent() then
4: NewProposal = MakeNewProposal()
5: Propose(NewProposal)
6: ValidValue = NewProposal
7: else if !LockedValueCurrent() ∧ValidValueCurrent() then
8: Propose(ValidValue)
9: else

10: Propose(LockedValue)
11: end if
12: end if
13: return
14: end function
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Algorithm 5 PreVote procedure

1: function doPendingPreVoteStep()
2: CurProp = GetCurrentProposal()
3: LocalPreVote = Nil
4: if CurProp 6= Nil then
5: if !LockedValueCurrent() ∧ !ValidValueCurrent() then
6: if CurProp.IsValid() then
7: PreVote(CurProp)
8: ValidValue = CurProp
9: LocalPreVote = CurProp

10: else
11: PreVote(Nil)
12: end if
13: else if !LockedValueCurrent() ∧ValidValueCurrent() then
14: if CurProp = ValidValue then
15: PreVote(ValidValue)
16: LocalPreVote = CurProp
17: else
18: PreVote(Nil)
19: end if
20: else
21: if CurProp = LockedValue then
22: PreVote(LockedValue)
23: LocalPreVote = CurProp
24: else
25: PreVote(Nil)
26: end if
27: end if
28: else
29: PreVote(Nil) . No current proposal
30: end if
31: return CurProp, LocalPreVote
32: end function
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Algorithm 6 PreCommit procedure

1: function doPendingPreCommitStep(CurProp, LocalPreVote)
2: NumPreVotes = GetCurrentPreVotes(CurProp)
3: if NumPreVotes ≥ Threshold then
4: ValidValue = CurProp
5: if CurProp = LocalPreVote then
6: PreCommit(CurProp)
7: LockedValue = CurProp
8: return
9: else

10: ValidValue = CurProp
11: end if
12: end if
13: PreCommit(Nil)
14: return
15: end function

Algorithm 7 NextStep procedure

1: function doPendingNextStep(CurProp)
2: nhBool = False
3: NumPreCommits = GetCurrentPreCommits(CurProp)
4: if NumPreCommits ≥ Threshold then
5: NextHeight(CurProp)
6: nhBool = True
7: else
8: NextRound()
9: end if

10: return nhBool
11: end function
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A valid node that has entered this state has not cast a Proposal, PreVote, PreVote-
Nil, PreCommit, PreCommitNil, or NextRound vote for the current round. The Proposal-
Timeout, the PreVoteTimeout, and the PreCommitTimeout have not expired for this round.
The node has not seen a valid NextHeight message for the current height. The node has
not seen a message for a higher round in the same height. The node has not seen a valid
message for a higher BlockHeight.

If the local node is the proposer for the current round and neither ValidValue or Locked-
Value are from the same height as the current round, the validator will form a new proposal.
The validator will write this Proposal to the database and store this Proposal as ValidValue
in the database as well.

If the local node is the proposer for the current round and ValidValue is from the cur-
rent height, but LockedValue is not from the current height, the validator will propose the
value defined by ValidValue and will set ValidValue equal to the constructed Proposal. The
validator may then return.

If the local node is the proposer for the current round and LockedValue is from the
current height, but ValidValue is not from the current height, the validator will propose the
value defined by LockedValue and will set ValidValue equal to the constructed Proposal.
The validator may then return.

All logic below this point is guarded by the condition that ValidValue and LockedValue
are of the same blockheight as the current round.

If the local node is the proposer for the current round and the round number of ValidValue
is greater than the round number for LockedValue, then ValidValue will be proposed and
the validator will set ValidValue equal to the constructed Proposal. The validator may then
return.

If the local node is the proposer for the current round and the round number for Locked-
Value is greater than the round number for ValidValue, then the value defined by Locked-
Value will be proposed and the validator will set ValidValue equal to the constructed Pro-
posal. The validator may then return.

If the local node is the proposer for the current round and both LockedValue and Valid-
Value are from the same round number, then the value defined by LockedValue will be
proposed and the validator will set ValidValue equal to the constructed Proposal. The
validator may then return.

If the local node is not the proposer for the current round, the node may immediately
return without performing any work.

In order to give the reader insight as to what the structure of the previous statements
look like in the actual implementation, the following code is provided from the source code
of the MadNetwork repository; see Listing 1. The intent of including this example code is to
allow the reader to understand how the conditional structures have been implemented. We
have gone to great lengths to structure the code of the consensus algorithm as fully covering
truth tables where possible to increase readability.

7.26.2 ProposalStep

Possible Next States:
• RoundJump
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Listing 1: Pending Proposal Step

func ( ce ∗Engine ) doPendingProposalStep (
txn ∗badger . Txn , r s ∗ roundStates ) error {

// i f l o c a l node i s the proposer f o r t h i s round
// make a proposa l
i f r s . l o c a l I s P r o p o s e r ( ) {

// i f not locked or v a l i d form new proposa l
i f ! r s . LockedValueCurrent ( ) && ! r s . Val idValueCurrent ( ) {

// 00 case
return ce . castNewProposalValue ( txn , r s )

}
// i f not locked but v a l i d known , propose v a l i d value
i f ! r s . LockedValueCurrent ( ) && rs . Val idValueCurrent ( ) {

// 01 case
return ce . castProposalFromValue ( txn , rs , r s . ValidValue ( ) )

}
// i f locked , propose locked
// 10
// 11 case
return ce . castProposalFromValue ( txn , rs , r s . LockedValue ( ) )

}
// l o c a l node i s not proposer ,
// do nothing u n t i l p roposa l t imeout
return ni l

}

35



• HeightJump
• FormNextHeight
• ProposalStep
• PendingPreVote
A valid node that has entered this state is a designated proposer for the current round

who has cast a Proposal but has not cast a PreVote, PreVoteNil, PreCommit, PreCommitNil,
NextRound, or NextHeight vote for the current round. The ProposalTimeout, the PreVote-
Timeout, and the PreCommitTimeout have not expired for this round. Further, the node
has not seen a valid NextHeight message for the current height.

The node may immediately return without performing any work.
This state is a logically empty state that is intended to guard against a double proposal.

7.26.3 PendingPreVote

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PreVoteStep
• PreVoteNilStep
A valid node that has entered this state has not cast a PreVote, PreVoteNil, PreCommit,

PreCommitNil, NextRound, or NextHeight vote for the current round, and the Proposal-
Timeout has expired. The PreVoteTimeout and the PreCommitTimeout have not expired
for this round. Further, the node has not seen a valid NextHeight message for the current
height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

If a validator has received a Proposal that it has been able to verify as valid, then that
proposal shall be called the PendingProposal for the purpose of this section. If the validator
has not received a Proposal that it was able to verify as valid, then the PendingProposal
shall be considered equal to the value Nil for the purpose of this section.

If the PendingProsposal is Nil, the validator will store a PreVoteNil in the local database
and return.

If the PendingProsposal is not equal to Nil, the PendingProposal must be checked for
validity with respect to the state transition. All logic below this point is guarded by the
condition that the PendingProposal is not Nil.

If the PendingProposal may be verified as invalid, the validator may write a PreVoteNil
to the database and return.

If the PendingProposal may be verified as valid, then the LockedValue and ValidValue
must be checked for equivalence and recency. All logic below this point is guarded by the
conditions that the PendingProposal is not Nil and has been verified as valid with respect
to the state transition of the system.

If neither the ValidValue or LockedValue is from the current height, the validator may
write a PreVote for the PendingProposal to the database and return.

36



If ValidValue is from the current height, but LockedValue is not from the current height,
and the PendingProposal and the ValidValue are for the same BClaims object, then the
validator will write a PreVote for the PendingProposal to the database and return.

If ValidValue is from the current height, but LockedValue is not from the current height,
and the PendingProposal and the ValidValue are not for the same BClaims object, then the
validator will write a PreVoteNil to the database for the current round and return.

If LockedValue is from the current height, but ValidValue is not from the current height,
and the PendingProposal and the LockedValue are for the same BClaims object, then the
validator will write a PreVote for the PendingProposal to the database and return.

If LockedValue is from the current height, but ValidValue is not from the current height,
and the Pending proposal and the LockedValue are not for the same BClaims object, then
the validator will write a PreVoteNil to the database for the current round and return.

If both the ValidValue and the LockedValue are from the current height, then the round
numbers will be compared. All logic below this point is guarded by the condition that the
ValidValue and the LockedValue are both for the same height and that height is equal to
the height of the current round.

If the round number of the ValidValue is greater than the round number of the Locked-
Value, and the PendingProposal and the ValidValue are for the same BClaims object, then
the validator will write a PreVote for the PendingProposal to the database and return.

If the round number of the ValidValue is greater than the round number of the Locked-
Value, and the Pending proposal and the ValidValue are not for the same BClaims object,
then the validator will write a PreVoteNil to the database for the current round and return.

If the round number of the LockedValue is greater than the round number of the Valid-
Value, and the PendingProposal and the LockedValue are for the same BClaims object, then
the validator will write a PreVote for the PendingProposal to the database and return.

If the round number of the LockedValue is greater than the round number of the Valid-
Value, and the Pending proposal and the LockedValue are not for the same BClaims object,
then the validator will write a PreVoteNil to the database for the current round and return.

If the round number of the LockedValue and the ValidValue are equal, and the Pending-
Proposal and the LockedValue are for the same BClaims object, then the validator will write
a PreVote for the PendingProposal to the database and return.

If the round number of the LockedValue and the ValidValue are equal, and the Pending
proposal and the LockedValue are not for the same BClaims object, then the validator will
write a PreVoteNil to the database for the current round and return.

7.26.4 PreVoteNilStep

• RoundJump
• HeightJump
• FormNextHeight
• PreVoteNilStep
• PendingPreCommit
• PreCommitNilStep
A valid node that has entered this state has cast a PreVoteNil for the current round.

A node that has entered this state has not cast a PreVote, PreCommit, PreCommitNil,
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NextRound, or NextHeight vote for the current round, and the ProposalTimeout has expired.
The PreVoteTimeout and the PreCommitTimeout have not expired for this round. Further,
the node has not seen a valid NextHeight message for the current height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

Upon entering this state, the node will first count the number of PreVote and PreVoteNil
messages observed for the current round.

If greater than threshold PreVotes has been seen for this round, the node will write a
PreCommitNil for the current round to the database. The node will also write the Proposal
that has greater than threshold PreVotes to the database as ValidValue. The node may then
return.

If greater than threshold PreVoteNils has been seen for this round, the node will write a
PreCommitNil for the current round to the database and return.

If neither the number of PreVotes or the number of PreVoteNil messages is greater than
the threshold, the node may return without performing any additional work.

7.26.5 PreVoteStep

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PreVoteStep
• PendingPreCommit
• PreCommitStep
A valid node that has entered this state has cast a PreVote for the current round. A

node that has entered this state has not cast a PreVoteNil, PreCommit, PreCommitNil,
NextRound, or NextHeight vote for the current round, and the ProposalTimeout has expired.
The PreVoteTimeout and the PreCommitTimeout have not expired for this round. Further,
the node has not seen a valid NextHeight message for the current height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

Upon entering this state, the node will first count the number of PreVote and PreVoteNil
messages observed for the current round.

If greater than threshold PreVotes has been seen for this round, the node will write
a PreCommit for the current round to the database. The node will store the Proposal
associated with the PreCommit to the database as the ValidValue. The node will store the
Proposal associated with the PreCommit to the database as the LockedValue. The node
may then return.

If greater than threshold PreVoteNils has been seen for this round, the node will write a
PreCommitNil for the current round to the database and return.

If neither the number of PreVotes or the number of PreVoteNils is greater than the
threshold, the node may return without performing any additional work.
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7.26.6 PendingPreCommit

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PreCommitNilStep
• PreCommitStep
A valid node that has entered this state has cast either a PreVote or a PreVoteNil for the

current round. A node that has entered this state has not cast a PreCommit, PreCommitNil,
NextRound, or NextHeight vote for the current round. Both the ProposalTimeout and the
PreVoteTimeout have expired for this round. The PreCommitTimeout has not expired for
this round. Further, the node has not seen a valid NextHeight message for the current height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

Upon entering this state, the node will first count the number of PreVote and PreVoteNil
messages observed for the current round.

If the local node has cast a PreVote in the current round and the number of PreVotes
is greater than the threshold, the node will write a PreCommit for the current round to
the database. The node will also store the Proposal associated with the PreCommit to
the database as the ValidValue. The node will also store the Proposal associated with the
PreCommit to the database as the LockedValue. The node may then return.

If the local node has cast a PreVoteNil in the current round and the number of PreVotes
is greater than the threshold, the node will write a PreCommitNil for the current round to
the database. The node will also store the Proposal associated with the PreVotes to the
database as the ValidValue. The node may then return.

If the local node has cast a PreVote in the current round and the number of PreVotes
observed in the current round is less than the threshold and the sum of the number of
PreVotes and PreVoteNils in the current round is greater than the threshold, the node will
write a PreCommitNil to the database. The node may then return.

If the local node has cast a PreVoteNil in the current round and the number of PreVotes
observed in the current round is less than the threshold and the sum of the number of
PreVotes and PreVoteNils in the current round is greater than the threshold, the node will
write a PreCommitNil to the database and return.

If none of the above conditions hold, the node may return without performing any addi-
tional work.

7.26.7 PreCommitNilStep

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PreCommitNilStep
• NextRound
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• NextHeight
A valid node that has entered this state has cast a PreCommitNil for the current round.

A node that has entered this state has not cast a PreCommit, NextRound, or NextHeight
vote for the current round. The ProposalTimeout has expired for this round. The PreVote-
Timeout may have expired for this round. The PreCommitTimeout has not expired for this
round. Further, the node has not seen a valid NextHeight message for the current height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

Upon entering this state, the node will first count the number of PreCommit and Pre-
CommitNil messages observed for the current round.

If the number of PreCommits is greater than the threshold and the node is capable of
validating the Proposal associated with the PreCommits as performing a valid state transi-
tion, then the local node may write a NextHeight message to the database for the current
round and return.

If the number of PreCommitNils is greater than the threshold and the number of Pre-
Commits is greater than the zero, and the node is capable of validating that the Proposal
associated with the PreCommit results in a valid state transition, the node will store the
Proposal associated with the PreCommit to the database as the ValidValue. The node will
also write to the database a NextRound for the current round and return.

If the number of PreCommitNils is greater than the threshold and the number of Pre-
Commits is equal to zero the node will write to the database a NextRound for the current
round and return.

If none of the above conditions hold, the node may return without performing any addi-
tional work.

7.26.8 PreCommitStep

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PreCommitStep
• NextRound
• NextHeight
A valid node that has entered this state has cast a PreVote and PreCommit for the current

round. A node that has entered this state has not cast a PreCommitNil, NextRound, or
NextHeight vote for the current round. The ProposalTimeout has expired for this round
and the PreVoteTimeout may have expired for this round. The PreCommitTimeout has not
expired for this round. Further, the node has not seen a valid NextHeight message for the
current height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

Upon entering this state, the node will first count the number of PreCommit and Pre-
CommitNil messages observed for the current round.
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If the number of PreCommits is greater than threshold, the node will write a NextHeight
message to the database and return.

If the number of PreCommitNils is greater than threshold, the node will write a Next-
Round message to the database and return.

If neither the number of PreCommits or the number of PreCommitNils is greater than
the threshold, the node will return without performing any additional work.

7.26.9 PendingNext

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PendingNext
• NextRound
• NextHeight
A valid node that has entered this state has cast a PreCommit or a PreCommitNil

for the current round. A node that has entered this state has not cast a NextRound or
NextHeight vote for the current round. The ProposalTimeout, the PreVoteTimeout, and
the PreCommitTimeout have expired for this round. Further, the node has not seen a valid
NextHeight message for the current height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

Upon entering this state, the node will first count the number of PreCommit and Pre-
CommitNil messages observed for the current round.

If the local node has cast a PreCommit in this round, and the number of PreCommits
is greater than threshold, the node will write a NextHeight message to the database and
return.

If the local node has cast a PreCommitNil in this round, the number of PreCommits is
greater than threshold, and the local node is capable of validating the Proposal associated
with the PreCommits, the node will write a NextHeight message to the database and return.

If the local node has cast a PreCommitNil in this round, the number of PreCommits is
greater than threshold, and the local node is not capable of validating the Proposal associated
with the PreCommits, the node will return without doing any further work.

If the number of PreCommits is less than threshold, but the sum of the PreCommits and
the PreCommitNils is greater than the threshold, the local node will write a NextRound
message to the database and return.

7.26.10 NextRoundStep

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PendingNext
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• NextRound
• NextHeight
• PendingProposal
A valid node that has entered this state has cast a PreCommit or a PreCommitNil for

the current round. A node that has entered this state has not cast a NextHeight vote for
the current round. The ProposalTimeout has expired for this round. The PreVoteTimeout
may have expired for this round. The PreCommitTimeout may have expired for this round.
Further, the node has not seen a valid NextHeight message for the current height.

If the local node is not a validator for the current round, the node may return without
performing any additional work. The following logic is guarded by this conditional.

Upon entering this state, the node will first count the number of PreCommit and Pre-
CommitNil messages observed for the current round. Upon entering this state, the node will
also count the number of NextRound messages observed for the current round.

If the local node has cast a PreCommit in this round, and the number of PreCommits
is greater than threshold, the node will write a NextRound message to the database and
return.

If the local node has cast a PreCommitNil in this round, the number of PreCommits is
greater than threshold, and the local node is capable of validating the Proposal associated
with the PreCommits the node will write a NextRound message to the database and return.

If the local node has cast a PreCommitNil in this round, the number of PreCommits is
greater than threshold, and the local node is not capable of validating the Proposal associated
with the PreCommits the node will return without doing any further work.

If the local node has not seen greater than threshold PreCommits, and has not seen
greater than threshold NextRound messages, the node may return without doing any further
work.

If the local node has not seen greater than threshold PreCommits, and has seen greater
than threshold NextRound messages, the node will write to the database a new RoundCert
object and return.

7.26.11 NextHeightStep

Possible Next States:
• HeightJump
• NextHeight
• PendingProposal
A valid node that has entered this state has cast a NextHeight message for the current

height.
There are no other guarantees about the state of this node.
If the local node is not a validator for the current round, the node may return without

performing any additional work. The following logic is guarded by this conditional.
Upon entering this state, the node will first count the number of NextHeight messages

observed for the current height.
If the number of NextHeight messages is greater than threshold, the validator will form

a new BlockHeader and write it to the database.
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If the number of NextHeight messages is not greater than threshold, the validator may
return without performing any additional work.

7.26.12 RoundJump

Possible Next States:
• HeightJump
• FormNextHeight
• PendingProposal
A valid node that has entered this state has observed a valid Round Certificate with a

higher round number in the same height as the current round. Further, the node has not
seen a valid NextHeight message for the current height.

The node will write the new RCert to the database in the location of the local nodes
MostRecentRoundCert and return.

7.26.13 HeightJump

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• PendingProposal
A valid node that has entered this state has seen a validly signed BlockHeader or Round

Certificate for a height that is greater than the height of the current round.
If the height of the BlockHeader or Round Certificate is equal to one greater than the

current round of the validator, and the PrevBlock value of the Round Certificate or Block-
Header is equal to the the expected blockhash from the current ValidValue, LockedValue, or
the most recent PreVote that the local node cast, store the BlockHeader and return.

If the height of the BlockHeader or Round Certificate is equal to one greater than the cur-
rent round of the validator, and the PrevBlock value of the Round Certificate or BlockHeader
is NOT equal to the the expected blockhash from the current ValidValue, LockedValue, or
the most recent PreVote that the local node cast, perform no additional work and return.

If the height is greater than one more than the height of the current round, return without
performing any additional work.

Note: This logic was chosen to allow the synchronization protocol to perform the work
necessary to bring the node up to the correct height.

7.26.14 FormNextHeight

Possible Next States:
• RoundJump
• HeightJump
• FormNextHeight
• NextHeight
A valid node that has entered this state has seen a valid NextHeight message for the

current height.
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There are no other guarantees about the state of this node.
Form a NextHeight message. Write the message to the database and return.

7.27 Mining Rewards

Mining rewards take two forms at this time. First, a validator is rewarded for cleaning up
stale DataStore objects from the chain. Second, a validator is paid a base reward in tokens
for performing the function of being a validator. These rewards are distributed in the block
snapshotting process and are minted into the Ethereum blockchain. These rewards are not
available for transfer or use until after at least one additional snapshot has been written to
the Ethereum blockchain.

7.28 Slashing

In order to ensure the miners are honest, there is not only the possibility of mining rewards
for following the protocol but also the threat of punishment for misbehavior. There will
be two types of fines: major fine and minor fine. A major fine is any fine that can be
cryptographically-verifiable malicious action. These include submitting incorrect shares or
group public keys during the DKG process. While mining blocks, double-signing at a given
block height is also malicious. A major fine should reduce a validator’s stake to the point
where he is unable to proceed with the DKG process. A minor fine may occur during the
DKG process when a validator fails to submit the appropriate information. Because it is
possible this was the result of technical failure and not malicious intent, we believe this
should not be as large of a fine. Even so, validators are a critical part of the process and are
expected to be resilient against technical failures.

7.29 Consensus Proofs

We now turn our attention to proving the safety of our consensus algorithm. This will follow
from a number of lemmas.

7.29.1 Safety

The arguments of safety and fault tolerance for the system are natural extensions of the
proofs for the ancestral origin of both the consensus mechanism and its parent. These
algorithms are, respectively, DLS and Tendermint.

We build our model in the case of Partial Synchrony. Specifically, we assume that all
messages that are sent must be eventually received. The sending of this message may be
accomplished in a single attempt, or it may be accomplished through multiple retransmis-
sions. In either case the message will be received and handled. Messages may arrive in any
order and may arrive more than once. We aim for the following properties:
• All valid nodes decide on the same valid output value.
• All valid nodes eventually decide on some valid output value.
• A value is defined as valid if it satisfies a predefined predicate isValid().
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Our algorithm operates in the model of total group order equal to 3f+1 with a threshold
of 2f + 1 in order to ensure progress. Thus, we may tolerate up to f faults. Our system can
tolerate strictly less than one-third Byzantine failures. We built our system to ensure safety
even in the presence of greater than one-third total failures as long as we limit Byzantine
failures to strictly less than one-third. This design principle does come with the necessary
sacrifice of liveliness under the conditions that failures exceed the allowable threshold.

This section will be written entirely in the context of consensus and will not speak
about this information in terms of transactions. We will speak about the system in terms
of blocks and values, where a block represents an append-only operation onto a shared
distributed log and a value will be a portion of the contents of the object appended to this
log. For the purpose of this discussion, we may assume all other fields within this object are
deterministically created based on application state and the proposed value itself.

7.29.2 Rules

If you PreCommit a Proposal in any round at any height, you will set LockedValue equal
to the Proposal that you PreCommitVoted and you will not unset this value at the same
block height in any round before signing the NextRound message that would lead to the
DeadBlockRound.

After signing the NextRound message that would lead to the DeadBlockRound for a
given block height, you must unset LockedValue and ValidValue.

After signing the NextRound message that would lead to the DeadBlockRound for a
given block height, you must ignore any NextHeight message from any previous round.

7.29.3 Proof of Safety

The proof of safety relies on this observation from Lemma 1: two subsets with at least a
threshold number of validators in each subset will share at least one honest validator.

Lemma 1
Let f be the number of malicious validators. Given any two subsets with at least 2f + 1
validators in a system containing 3f + 1 validators, those two subsets share at least f + 1
validators. Thus, these two subsets share at least one honest validator.

Proof. Let A and B be two subsets with at least 2f + 1 validators chosen from N = 3f + 1
validators. From De Morgans laws, we know

A ∩B = (Ac ∪Bc)c.

Here, Ac denotes the complement of A (that is, the elements of the system not in A). In
what follows, |A| denotes the number of elements in A. Thus, we have
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|A ∩B| = |(Ac ∪Bc)c|
= N − |Ac ∪Bc|
≥ N − (|Ac|+ |Bc|)
≥ N − 2f

= f + 1.

Their intersection shares at least f + 1 validators and there are f malicious validators, so we
see that A and B share at least one honest validator.

This lemma ensures that honest participants will always agree when PreCommitting a
proposal or submitting a NextHeight message in a given round, as the next two lemmas
show.

Lemma 2
In any round, any 2 honest participants who PreCommit a proposal will PreCommit the
same proposal.

Proof. Suppose two honest participants PreCommit proposals P1 and P2. To PreCommit
a proposal, they both must have knowledge of at least 2f + 1 PreVote messages from par-
ticipants. There corresponds subsets S1 and S2, where S1 contains the participants who
submitted prevotes for P1 and S2 contains the participants who submitted PreVotes for P2.
By Lemma 1, S1 and S2 share at least one honest participant. An honest participant will
only PreVote for one value in a round, so the proposals P1 and P2 must agree.

Lemma 3
In any round, any 2 honest participants who submit a NextHeight message will submit a
NextHeight message for the same proposal.

Proof. Mutatis mutandis, the proof is the same as that of Lemma 2.

We are now able to show the multiple distinct NextHeight messages from honest par-
ticipants are not able to occur before the DeadBlockRound. This is a stronger result than
Lemma 3 and follows from the fact that a threshold number of LockedValues must occur
before submitting a NextHeight message.

Lemma 4
In any round before the DeadBlockRound, any 2 honest participants who submit a Next-
Height message will submit a NextHeight message for the same proposal.

Proof. Suppose we have not yet reached the DeadBlockRound. Let P1 and P2 be NextHeight
messages from two honest participants with corresponding signing subsets S1 and S2. When
P1 is signed, all members of S1 are supposed to set LockedValue to the proposal correspond-
ing to P1 because they PreCommitted P1. Similarly, all members of S2 are supposed to
set LockedValue to the proposal corresponding to P2 because they PreCommitted P2. This
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implies S1 and S2 are two subsets of participants of size at least 2f + 1 with LockedValue
set. Once an honest participant sets his LockedValue, it is never unset before the Dead-
BlockRound. By Lemma 1, S1 and S2 have at least one honest participant in common with
his LockedValue set to one proposal. Thus, we see that the P1 and P2 NextHeight messages
must be for the same proposal when they are submitted by honest participants.

Lemma 5 is useful in bounding the number of honest validators who may not proceed to
the next round.

Lemma 5
In order for 2f + 1 validators to enter a round, at least f + 1 honest validators must have
signed a NextRound message and at most f honest validators failed to sign a NextRound
message.

Proof. We recall an honest validator may not enter a round without a valid RoundCertificate.
A NextRound message contains two objects. The first object is a RoundCertificate for the
current round. The second is a RoundShare object for the next round. A RoundCertificate
contains both round number and block height as internal fields, and in order to form a valid
Round Certificate, at least 2f + 1 validators must have signed a RoundShare. Because there
are at most f dishonest validators who signed for the RoundCertificate, at least f +1 honest
validators must have also signed the RoundCertificate. Thus, at most f honest validators
did not sign the RoundCertificate.

Once validators reach the DeadBlockRound, they will not acknowledge any NextHeight
messages for any preceding round. This ensures that dishonest validators are not able to
fork the chain by producing a block based on those NextHeight messages.

Lemma 6
If at least 2f + 1 participants sign the RoundCertificate to the DeadBlockRound, then it
is not possible for 2f + 1 participants to form a valid NextHeight message for any round
preceding the DeadBlockRound.

Proof. Given Lemma 5 and the rule that any honest validator who has signed a NextRound
message for the DeadBlockRound will never sign or acknowledge any NextHeight message
from a previous round, at least f+1 honest validators must have signed a NextRound message
for the DeadBlockRound if there exists a RoundCertificate for the DeadBlockRound. If at
least f + 1 honest validators are in the DeadBlockRound, at most f honest validators may
remain in a round preceding the DeadBlockRound. If at most f honest validators remain in
a preceding round, then the malicious validators are unable to use the signatures of f honest
validators to form a set of 2f + 1 valid NextHeight messages. Therefore, the malicious
validators may not form a block from those NextHeight messages.

With this assurance, we allow for participants to safely proceed to the DeadBlockRound
even if they previously were locked onto a NextHeight message.
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Lemma 7
It is safe for any participant who is locked on a NextHeight message to unlock and proceed
to the DeadBlockRound upon receiving a RoundCertificate for the DeadBlockRound.

Proof. This follows from Lemma 6.

The previous work allows us to show that we will converge to the EmptyBlock when a
RoundCertificate for the DeadBlockRound exists. This ensures new blocks will be created
even if no transactions are performed.

Lemma 8
The DeadBlockRound must converge to the EmptyBlock if a RoundCertificate for the Dead-
BlockRound exists.

Proof. Upon entering the DeadBlockRound, every valid process will immediately PreVote
the EmptyBlock and ignore all other contradicting votes. These contradicting votes include
any PreVote for a Proposal that is not the EmptyBlock, any NextRound message, any Pre-
Commit that is not a PreCommit for the EmptyBlock, and any PreVoteNil or PreCommitNil
message as well. As a result of Lemma 6, at least f+1 honest validators enter the DeadBlock-
Round. Therefore, the honest validators who enter the DeadBlockRound will only progress
once at least f other validators also PreVote in the DeadBlockRound. Because we assume all
messages are eventually received, the at most f honest validators who did not sign the Next-
Round Certificate for the DeadBlockRound will eventually receive the RoundCertificate for
the DeadBlockRound and PreVote for the EmptyBlock in the DeadBlockRound. It follows
that the round eventually converges to the EmptyBlock and no other possible block.

The previous work also allows us to show we will not converge to more than one valid
block at a given block height.

Lemma 9
It is not possible for our system to converge to more than one valid block for any given block
height.

Proof. If the round enters the DeadBlockRound, then Lemma 8 shows that we will con-
verge to the EmtpyBlock. Lemma 4 proves that it is not possible to have more than one
proposal for which an associated NextHeight message has been validly formed before the
DeadBlockRound. Lemma 7 allows for a safe transition into the DeadBlockRound.

The next few lemmas assure the behavior of honest validators as it relates to voting.

Lemma 10
An honest validator who enters a round must eventually PreVote or PreVoteNil in that
round.

Proof. All honest validators will either PreVote or PreVoteNil at the termination of the
ProposalTimeout. Therefore, they must eventually prevote.
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Lemma 11
As long as 2f + 1 honest validators enter a round, there will be at least 2f + 1 PreCommits
or PreCommitNils in that round.

Proof. By Lemma 10, all honest validators will eventually PreVote or PreVoteNil in a round.
In the event that a PreVote is received for a competing Proposal from the perspective of a
validator who has already PreVoted, that validator will count this PreVote as a PreVoteNil.
From there, the honest validators will be able to either PreCommit or PreCommitNil, thus
leading to 2f + 1 PreCommits or PreCommitNils.

Lemma 12
As long as 2f + 1 honest validators enter a round, there will be at least 2f + 1 NextRound
or NextHeight messages in that round.

Proof. Mutatis mutandis, the proof is the same as that of Lemma 11.

We now show that a round must terminate or a higher block is formed.

Lemma 13
If at any time a valid RoundCertificate exists for a round, that round must eventually
terminate or a higher block must be formed.

Proof. We first focus on the case when no validator has signed a DeadBlockRound Round-
Certificate. In this case, we may have that f + 1 honest validators have signed a Next-
Height message and the round cannot terminate but a new block will be formed because the
validators will eventually observe the previous NextHeight messages and will follow them.
Otherwise, at least f + 1 honest validators will have entered the current round and it must
eventually terminate; we will fall back to the previous case if any of these validators observe
a NextHeight message.

In the case that a DeadBlockRound RoundCertificate exists, we have already proven
termination by Lemma 8.

Taken together, we are now able to show that our blockchain will make forward progress
provided there are a limited number of faults.

Lemma 14
Our blockchain will always make forward progress so long as there are no more than f faults
in the system.

Proof. If there are at most f faults, then all rounds must terminate or a new block will be
formed by Lemma 13.
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8 Networking

8.1 Overview of Networking Stack

The networking stack consists of several layers that have been selected to allow for code
generation and security. These layers consist of low level networking protocols upon which
the Peer-to-Peer networking, Discovery, and BootNode protocol have been built.

8.2 Brontide

In order to provide authenticated encryption, we selected Brontide as the backbone of our
networking stack. Brontide is the authenticated encryption protocol that is used by the
Bitcoin Lightning Network and has been used securely in the wild for some time. The
Brontide system was derived from the Noise Protocol Framework. Noise uses Diffie-Hellman
key agreement to enable Authenticated Encryption with Associated Data (AEAD). The
Noise Protocol Framework was created by Trevor Perrin, one of the original authors of the
precursors to the Signal Protocol. The official protocol name Brontide uses is

Noise XK secp256k1 ChaChaPoly SHA256.

Here, the Noise XK handshake specifies the initiator knows the responders static public key,
so it is never transmitted. The additional requirements include the elliptic curve secp256k1,
the AEAD method based on the ChaCha20 symmetric cipher and Poly1305 authenticator,
and the cryptographic hash function SHA256. We selected this type of protocol to ensure
that a peer was protected from MitM attacks if the peer was connecting to a previously
known host. Further, the protocol ensures data integrity without the need to depend on
x.509 systems.

8.3 Yamux

Yamux is a robust multiplexing library built by HashiCorp. This lightweight TCP streaming
multiplexor protocol was built to allow a TCP connection to be converted into an ordered
full duplex communication channel that allows multiple logical connections to exist over a
single TCP connection. This multiplexor allows gRPC to be used in our system seamlessly
while also only requiring a single connection between peers.

8.4 gRPC

gRPC is a mature remote procedure call system originally developed at Google before being
released to the public. It uses Protobuf (Protocol Buffers) for data serialization which allows
for easy client-server communication necessary for the higher-order protocols. gRPC is used
by many organizations including Netflix, Docker, and Spotify and has proven capable in
demanding applications.
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8.5 Connection Handshaking

In addition to the connection handshaking associated with Brontide, before any higher level
protocol begins, two messages must be exchanged. The first message exchanges the Chain
ID of each peer. If these values do not match, the connection is dropped. This has been
built into this level of the protocol to prevent problems seen in other blockchain networks
where peers attempt to sync the wrong chain. We chose instead to validate both peers are
on the same network and terminate on failure as soon as possible. The second message
communicates the port on which the remote node may be dialed back. The specific port
that is passed in this location is the port on which the P2P protocol of a peer may be found.
The reason this value is passed at this level is to facilitate the proper operation of discovery
by forming a complete identity of a remote node. This identity includes the host, port, and
public key of a remote node

8.6 Summary of Higher Order Protocols

At this time there are three higher order protocols in the communication stack. These are
the BootNode protocol, the Discovery protocol, and the P2P protocol. These protocols
have been divided into these classifications to allow differentiation of operations and security
requirements. The BootNode protocol allows a peer who is first joining the network to
discover peers in the overlay network using a persistent entry point. The Discovery protocol
allows a peer to be connected to another peer for a single request that communicates other
peers that a node may connect to. This protocol allows a node to build a peer list. Finally,
the P2P protocol is a persistent full duplex channel between nodes in the P2P network. All
protocols are based on gRPC after the initial handshake.

8.7 BootNode Protocol Summary

The BootNode protocol operates by allowing a remote host to connect to a persistent point
of entry into the overlay P2P network. The bootnode servers are ignorant of the block
chain and serve the singular purpose of allowing peering. These servers hold a cache of
long term peers that have remained responsive to intermittent heartbeats over several days.
These servers also hold an LRU cache that contains the most recently seen nodes up to
cache eviction. Any node that connects to a bootnode server will make a single request that
returns a list of peers that may be used for discovery and this list will contain items from
both of the above mentioned caches. The bootnode server will terminate the connection
after this single request is served.

8.8 Discovery Protocol Summary

The Discovery Protocol allows a node to find more peers. Peers are stored in one of sixteen
buckets based on the first hex character of the public key of the peer. These buckets contain
two sublists. One list stores active P2P connections while the other list stores known nodes
from the discovery protocol requests. The algorithm attempts to fill the set of not connected
buckets by dialing a random subset of peers from each bucket and requesting the closest
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known peers to a random address. This is similar in nature to how Kademlia operates, but
not identical. The returned peers are added to the list of possible peers to connect with.
Once a node has enough peers that it may connect to, it begins dialing a random peer from
each bucket until a user-defined number of peers have been connected to using the P2P
protocol.

8.9 P2P Protocol Summary

The P2P protocol allows peers to gossip information about blockchain state, share consensus
messages, and gossip transactions. This protocol is, like the other protocols, based on gRPC.
The only difference is that all connections under this protocol are simulated connections that
have been constructed from the Yamux multiplexing protocol. This allows the peers to act
as both server and client in the P2P network while also leveraging the robust nature of gRPC
in the process.

9 Data Structures

9.1 Compact Sparse Merkle Tries

In order to allow for the desired set of diverse verifiable data structures that are necessary in
a blockchain system, we elected to select a general purpose tool that could fill most roles in
our system without unacceptably sacrificing performance. Although more optimal structures
may exist for some applications, forcing developers to build many complex forms of verifiable
data structures complicates initial engineering and future ports to other languages. Thus, a
single structure was selected that could be used in all current cases. This solution is based on
a modified form of the open source Aergo State Trie. This is a Compact Sparse Merkle Trie
that allows for compact proofs of inclusion/exclusion, stores a leaf at the optimal sub height,
and operates as a base sixteen trie while actually being a true binary trie implementation.
This polymorphic nature is derived from the manner in which the trie is built. The length
of a generalized encoded proof of inclusion/exclusion requires O(log n) merkle proof keys,
with an additional overhead of 64 bytes to communicate the key and value of the proof. The
proof also requires O(log n) bits to communicate the positioning of the merkle proof keys in
the trie. Thus, the total size is effectively O(log n).

The trie itself is a binary trie where all nodes are stored in height four sub tries. Each sub-
trie may be loaded as a batched operation that accommodates a compact encoding through
the use of bit fields that are similar to those used in the proofs. Thus, for a given height four
sub trie, only nonempty nodes need be stored, and the bit field may be parsed to determine
the positions these nodes should occupy in the actual trie. The process of updating the trie
may be performed in a concurrent manner by applying all leaf transformations first and then
concurrently calculating the hashes with a blocking operation on each height four sub-trie
at the leaf levels. Thus, each sub-sub-trie may be calculated before the root of the sub-trie
itself is calculated, and this concurrency may be arbitrarily extended across the trie.
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9.2 State Trie

The State Trie is a CSMT that includes two types of objects and has the root value of the
trie updated and stored in every block. The first object is the hash of a UTXO stored in
the location of its UTXOID. The second type of object is the hash of a deposit nonce that is
stored in the location that is equal to the deposit nonce. The first objects, the UTXO type
objects, allow a compact proof of inclusion or exclusion to be formed for the UTXO at a
given block height. This is useful for proofs of datastores, proofs to light clients, and allows
fast syncing of the chain from a known good block, such as a snapshot. When a UTXO is
created, it is added to the trie. When the UTXO is consumed, it is removed from the trie.
Deposits work in an inverse manner. When a deposit is spent, it is added to the trie and
shall remain there in perpetuity. This addition tracks the spending of deposits.

9.3 BlockHash Trie

The BlockHash Trie is a CSMT that stores the block hash of each block mined at a leaf value
where the key is the zero padded block number. This value is included in every block, where
the value in each block references the root of the trie after inclusion of the previous block.
The structure is maintained in order to allow light clients to query blocks on a singular basis
with proof of inclusion for each queried block. The proofs themselves are intended to start
from a snapshot block and allow previous blocks from the snapshot to be proven as valid
blocks from the entire chain. This system also has the benefit of allowing proofs of sidechain
state to be formed much more readily in the Ethereum blockchain due to the ability to
easily prove a block header as having a specific block hash as a fixed complexity procedure.
Alternative systems must either track every block hash in the Ethereum blockchain, or large
batches of contiguous blocks must be injected in order to prove state at an arbitrary block.
We overcome these limitations through the proofs of inclusion and exclusion offered by the
CSMT.

10 Economics

Miners are privileged actors who choose transactions to include in the sidechain blocks. In
order to ensure honesty, there must be some method to punish nefarious validators when
cryptographically-verifiable malicious behavior is observed. Therefore, all miners are re-
quired to stake a certain amount of Ether in a smart contract before being able to become
a validator. This ensures the desired Nash equilibrium: it is in the miner’s interest to cor-
rectly follow the procedure and receive compensation rather than to deviate from it and lose
significant stake. This includes malicious behavior during the distributed key generation
procedure (for example, failing to correctly share a secret) as well as when mining blocks
(for example, signing two different proposals). All cryptographically-verifiable malicious be-
havior will be validated as such by an Ethereum smart contract. We note that submitting a
false accusation is malicious behavior and will result in stake slashing.

In order to ensure security, we do not allow direct withdrawals at this time; this is due to
security concerns and complexities of exit games. In particular, there is the possibility miners
could create tokens out of thin air and then quickly move those tokens to the Ethereum
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blockchain. By not allowing for direct withdrawals, those tokens created out of thin air
cannot be removed. Creating such tokens would be malicious behavior by a miner who
would then be punished accordingly. If necessary, the sidechain may be reorganized to
negate such malicious behavior; however, it is not possible to invalidate blocks on Ethereum
once they have been committed. Thus, atomic swaps are safer than direct withdrawals in
the context of our security model and we take this approach.

We allow for deposits from Ethereum into the sidechain to occur through direct exchange.
When a deposit occurs in the Ethereum MainNet, tokens are burned in the Ethereum Chain
and an equal number of tokens become available after a minimum block wait time in the
sidechain.

Miners are rewarded in two different ways. The first way miners are rewarded is upon
the completion of an epoch when a snapshot is written into the Ethereum blockchain. This
incentivizes miners to mine blocks and have the system progress, as mining more blocks will
result in more rewards. Snapshots occur at a fixed interval of sidechain blocks as well as
after a minimum required number of Ethereum blocks.

Validators are also rewarded for cleaning up stale state; that is, when a DataStore has
expired, the miner can delete the DataStore and claim its deposit as a reward. Both of these
rewards are in the form of MadNet tokens. This means that miners will be the source of
token liquidity within the system, as they are required to have an Ethereum account as well
as having a significant supply of tokens; furthermore, they determine which transactions are
included in the blocks they propose and could include their atomic swaps. In order to store
data, MadNet tokens are required to be burned. So long as the data exists, more tokens are
burned to compensate the miners for being required to store the data.

In order to establish value stability during the initial period of low utilization, an incen-
tivized mechanism of illiquidity has been established. This mechanism is designed to allow
token holders to lock balances of tokens into a smart contract that will return yield to the
owner that is expressed as a function of token utilization and the amount locked.

First, the amount of illiquid tokens is set. From there, we divide these tokens into
different tranches; each tranche holds tokens for a predetermined time. The longer holding
requirements will result in a greater rate of return. Should we determine that the system
requires more tokens, tokens may be released, starting with the lowest yield tranche and
working toward the highest yield. A bonus will be paid for early release as specified in the
smart contract; the exact rate of return will be discussed below. We expect the number of
tokens required to follow a normal distribution, so we use that to help distribute the tokens
appropriately in the tranches. Below is a plot of the relative sizes of the tranches. The
exact number of tranches is yet to be determined but there is no restriction on the allowable
number. In the plot below, the tranches will be released from left to right, starting near 0
and ending near 1; see Fig. 16. The specified rate of return will increase from left to right.

A larger rate of return will occur should tokens need to be released into the market sooner
than anticipated. The actual rate of return will be determined in relation to the expected
holding and will vary smoothly with respect to time (the number of blocks); the maximum
payout will be double the expected rate of return. All of this helps ensure a stable initial
value for the token. A plot of the rate of return is shown below. Note the plot is the tokens
paid out in addition to what was deposited. Here, if the tokens are released at one-half
the holding time, the rate of return will be twice the agreed upon amount. Similarly, if the
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Figure 16: Relative size of an potential set of tranches to incentize illiquidity.

tokens are released at the originally agreed upon time, the rate of return will be the agreed
upon amount (technically, a slightly greater amount); see Fig. 17. Thus, if tokens are quickly
released, there will be only a small payout, but after an initial period of time, the rate of
return will be at least the specified amount.

11 Layer Three

11.1 Scriptless Scripts and State Channels

An important implication of this work is one that was not fully considered at the time
of conception. The realization came later when thinking about how the accusation and
snapshot formation process operates. Namely, the inclusion of the abstraction of signature
verification may be extended in further iterations to allow Schnorr signatures and other
primitives. With this toolbox in place and the ability to extend the validation of a UTXO
in an isolated manner, as is afforded by the design of the account abstraction system, more
exotic primitives may be easily built. These include adaptor signatures, SE-snarks, and many
other primitives that may be leveraged to accommodate the concept of scriptless scripts.
Ultimately these constructs allow the system we have defined to be used as a restricted
smart contract capable system without the need to verify the actual smart contract logic in
the chain.

Further, other protocols may leverage these capabilities in concert with the existing ability
to compactly prove state about the sidechain in the context of an Ethereum smart contract.
The authors of this paper believe this ultimately may serve as an interesting primitive for
constructing proofs of verifiable computation within an Ethereum smart contract. An ex-
ample of this process that may be built based on the operation of the system without any
modification follows.

State channels are a promising technology that suffer from a problem of requiring all
participants to be online at all times. This problem may be addressed through a hybrid
solution based on the construction of MadNetwork. Given the existence of MadNetwork, a
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Figure 17: This plot shows how the specified rate of return will be multiplied by to show
the actual rate of return. The maximum return occurs when the tokens in the tranche are
released at one-half of the number of blocks they were originally held. This would occur
because the system requires a large supply of tokens.

state channel may be constructed using a negotiated BLS multisignature account as described
in the account abstraction section.

Let these two parties be named Alice and Bob. Let Alice and Bob have some motivation
for continual exchange of value. Alice and Bob coordinated to negotiate a 2 out of 2 BLS
multisignature.

Alice will be the first mover in this example, and so Alice will create a smart contract on
Ethereum in which she writes the negotiated public key and deposits some value. Let this
contract have knowledge of the snapshot contract for MadNetwork. Let this smart contract
have three exit conditions. The first exit should be an exit condition that allows Alice to
remove the deposit if Bob does not also place an equal deposit as Alice by some predetermined
block number in the future. Let the other two exit conditions only be accessible after both
parties have placed such a deposit. Let these other two exit conditions be an exit initiated
by Alice or an exit initiated by Bob. Let an exit by Alice or Bob only occur within ten
Ethereum blocks of a snapshot being recorded to the Ethereum blockchain by the validators
of MadNetwork. Let this exit require a proof of state against the snapshot and only be valid
for the most recent snapshot of MadNetwork.

Before Bob places a deposit, let Alice and Bob coordinate to create a DataStore in
MadNetwork that holds a single 32 byte value. Let this value be the balance of Alices
deposit in the Ethereum smart contract. Once this datastore has been constructed, let Bob
place his deposit into the smart contract. Each time Alice and Bob wish to exchange value let
Alice and Bob coordinate to sign a new transaction that overwrites the previous DataStore
with a new value. This operation should not occur in any epoch until at least fifteen blocks
have been recorded in the Ethereum blockchain since the last snapshot. This delay is to
ensure the window of generating a valid exit proof for the smart contract is fully terminated
before a new round of exchange may begin.

Let the value of the DataStore be the new balance of Alice after a mutually agreed upon
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exchange of value. What governs such exchange is beyond the scope of this example. Let us
simply say that they agree to exchange value based on information external to the system.
For each state transition, both parties must sign a partial signature to a transaction that is
written to the sidechain. Thus, the value is mutually agreed upon.

If at any point either party wishes to terminate the channel, the party may stop sign-
ing additional changes to the DataStore. At the termination of an epoch, the data of this
DataStore may be proven in the Ethereum Blockchain in a compact manner using the pa-
rameters of the most recent snapshot. The proof of existence for the DataStore UTXO is
just a Merkle Proof of Inclusion against the StateRoot of the snapshot block. The parsing
logic of the DataStore is fairly trivial assuming the RawData field of the DataStore is a fixed
size object. This assumption will allow fixed offset parsing of the canonical encoding of the
DataStore object.

Once the existence of a UTXO is proven against a snapshot, the public key of the signer
must be proven as equal to the 2 out of 2 BLS public key as stored in the smart contract.
Assuming economic security of the sidechain is sufficient, the BLS signature of the DataStore
need not be verified in the smart contract since this requirement is enforced in the sidechain
validation logic. If this assumption is insufficient, our system is capable of validating a BLS
signature in an Ethereum smart contract for less than 200K gas. This can likely be bounded
more closely to 150K gas, but 200K is a safe upper bound for what we are describing.

Alice or Bob may initiate such a termination in any epoch in the designated window.
Thus, the final state of the external system may be collapsed and proven in the context of
the EVM. This state is the final state of the system which is, by definition, the last state
that both parties have agreed to in advance. Given that this state is the balance of Alice, the
smart contract may enforce that Alice may withdraw only this balance at the termination of
the channel. Bob may only withdraw his own value minus the delta of Alices initial value.

The operation of parsing the object, validating the Merkle proof, and checking the data
field as a simple uint256 value should cost around 700K gas for a Merkle Proof of 256 keys.
This is the most complex Merkle Proof possible and actual costs are likely to be a fraction of
this worst case value. Specifically, the cost should scale as O(log n) of the number of UTXOs
that exist in the State Trie.

This construct is a toy example, but it does highlight a core benefit of the protocol.
Namely, that the problems around state channel participant availability may be addressed
by preventing an exit from a state both parties have not agreed to as the most recent state
of the system. Other constructs may be devised for more complex cases. The fundamental
idea is that MadNetwork may act as an out-of-band storage system that is cryptographically
verifiable and allows proof of an item being the most recent object state.

11.2 AdLedger PKI

One application of MadNetwork is Transparent by Design Public Key Infrastructure (TPKI).
This is discussed more fully in its own whitepaper, but we summarize the main ideas here.

The need for TPKI comes from the unfortunate but undeniable truth: the x.509 standard
is broken beyond repair. This comes from ill-defined standards as well as haphazard attempts
at patchwork extensions to salvage it. One main issue arises from certificate revocation, as it
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is not possible to ensure that invalid certificates are rejected. A proposed solution is OCSP,
but it is not sufficient due to its inability to handle the large number of requests.

To counteract this, we developed TPKI. Instead of issuing certificates with the lifetime
of years that may become compromised, we issue short-lived certificates (validity around
one day) that are regularly renewed. Having short-lived certificates ensures auto-revocation
and requires proof of continued compliance for reissuance. Additionally, each certificate has
well-defined properties and we do not allow arbitrarily chaining of certificates; this protects
us against some known attacks. Furthermore, any certificate not present or ill-formed is
considered invalid by default and should not be trusted. Root level certificates are not
cross-validated (although they are self-signed) to ensure a well-defined notion of validity
and revocation. Should a root certificate become compromised, a predetermined storage
location in MadNetwork will hold the revocation key. This revocation public key, if present,
will show that all users should reject subordinate certificates from this root certificate. We
envision there being multiple Certificate Authorities with separate root certificates so that
the revocation of one will not affect the others.
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A Transaction Object Specification

Listing 2: Cap’n Proto Transaction and UTXO Definition

using Go = import "/go.capnp" ;
@0xb99093b7d2518300 ;
$Go .package ("capn" ) ;
$Go . import ("github.com/MadHive/MadNet/application/capn" ) ;

const defaultDSPreImage : DSPreImage = ( chainID = 0 , index = 0x"00" ,
i s suedAt = 0 , depos i t = 0 , rawData = 0x"00" , owner = 0x"00" ) ;

const defaultDSLinker : DSLinker = ( txHash = 0x"00" ,
dSPreImage = . defaultDSPreImage ) ;

const defaultVSPreImage : VSPreImage = ( chainID = 0 , va lue = 0 ,
owner = 0x"00" ) ;

const defaultASPreImage : ASPreImage = ( chainID = 0 , va lue = 0 ,
owner = 0x"00" , i s suedAt = 0 , exp = 0 ) ;

const defaultTXInPreImage : TXInPreImage = ( chainID = 0 ,
consumedTxIdx = 0 , consumedTxHash = 0x"00" ) ;

const defaultTXInLinker : TXInLinker = (
tXInPreImage = . defaultTXInPreImage , txHash = 0x"00" ) ;

struct DSPreImage {
chainID @0 : UInt32 = 0 ;
# The chainID o f the chain t h i s ob j e c t was c rea ted on .

index @1 : Data = 0x"00" ;
# The index o f t h i s data r e f e r e n c e .

i s suedAt @2 : UInt32 = 0 ;
# The Epoch during which t h i s ob j e c t was c reated .

depo s i t @3 : UInt32 = 0 ;
# The depos i t g iven to t h i s da ta s to r e .

rawData @4 : Data = 0x"00" ;
# The raw data a s s o c i a t e d with t h i s data s t o r e .

tXOutIdx @5 : UInt32 = 0 ;
# The index at which t h i s element appears in the t r a n s a c t i o n
# output l i s t .

owner @6 : Data = 0x"00" ;
# The hash o f the pub l i c key o f the owner o f t h i s ob j e c t .

}

struct DSLinker {
dSPreImage @0 : DSPreImage = . defaultDSPreImage ;
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# The s t r u c t u r e conta in ing p a r t i c u l a r in fo rmat ion f o r t h i s ob j e c t .

txHash @1 : Data = 0x"00" ;
# The hash o f the t r a n s a c t i o n that c rea ted t h i s ob j e c t .

}

struct DataStore {
dSLinker @0 : DSLinker = . defaultDSLinker ;
# Linking from ob j e c t to txHash .

s i g n a t u r e @1 : Data = 0x"00" ;
# Signature o f the DSLinker

}

########################################################################

struct VSPreImage {
chainID @0 : UInt32 = 0 ;
# The chainID o f t h i s ob j e c t .

va lue @1 : UInt32 = 0 ;
# The value s to r ed in t h i s ob j e c t .

tXOutIdx @2 : UInt32 = 0 ;
# The index at which t h i s element appears in the t r a n s a c t i o n
# output l i s t .

owner @3 : Data = 0x"00" ;
# The hash o f the pub l i c key o f the owner o f t h i s ob j e c t .

}

struct ValueStore {
vSPreImage @0 : VSPreImage = . defaultVSPreImage ;
# The s t r u c t u r e conta in ing p a r t i c u l a r in fo rmat ion f o r t h i s ob j e c t .

txHash @1 : Data = 0x"00" ;
# The hash o f the t r a n s a c t i o n that c rea ted t h i s ob j e c t .

}

########################################################################

struct ASPreImage {
chainID @0 : UInt32 = 0 ;
# The chainID o f t h i s ob j e c t .

va lue @1 : UInt32 = 0 ;
# The value s to r ed in t h i s ob j e c t .
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tXOutIdx @2 : UInt32 = 0 ;
# The index at which t h i s element appears in the t r a n s a c t i o n
# output l i s t .

owner @3 : Data = 0x"00" ;
# <sva><curve><hashlock>< i n i t i a l owner pubk hash><partner pubk hash>
# The hash o f the pub l i c key o f the o r i g i n a l owner o f t h i s ob j e c t .

i s suedAt @4 : UInt32 = 0 ;
# The Epoch during which t h i s ob j e c t was c reated .

exp @5 : UInt32 = 0 ;
# The Epoch during which t h i s ob j e c t w i l l f a l l back to the o r i g i n a l
# owner i f i t i s not c la imed by the partner be f o r e t h i s po int .
# For s a f e t y t h i s should be at l e a s t three epochs a f t e r i s suedAt .

}

struct AtomicSwap {
aSPreImage @0 : ASPreImage = . defaultASPreImage ;
# The s t r u c t u r e conta in ing p a r t i c u l a r in fo rmat ion f o r t h i s ob j e c t .

txHash @1 : Data = 0x"00" ;
# The hash o f the t r a n s a c t i o n that c rea ted t h i s ob j e c t .

}

########################################################################

struct TXInPreImage {
chainID @0 : UInt32 = 0 ;
# Chain id on which t h i s ob j e c t was c rea ted .

consumedTxIdx @1 : UInt32 = 0 ;
# Index at which the consumed ob j e c t was c rea ted in the tx named
# by consumedTxHash or the max value o f u int32 to s i g n a l a depo s i t
# from Ethereum .

consumedTxHash @2 : Data = 0x"00" ;
# The hash o f the t r a n s a c t i o n that c rea ted the ob j e c t to be
# consumed or the nonce o f the depos i t i f input i s a depo s i t from
# Ethereum bc .

}

struct TXInLinker {
tXInPreImage @0 : TXInPreImage = . defaultTXInPreImage ;
# The s t r u c t u r e conta in ing p a r t i c u l a r in fo rmat ion f o r t h i s ob j e c t .

63



txHash @1 : Data = 0x"00" ;
# The hash o f the t r a n s a c t i o n that i s consuming t h i s ob j e c t .

}

struct TXIn {
tXInLinker @0 : TXInLinker = . defaultTXInLinker ;
# Linking from ob j e c t to txHash .

s i g n a t u r e @1 : Data = 0x"00" ;
# Signature o f l i n k e r .

}

########################################################################

struct TXOut {
union {

dataStore @0 : DataStore ;
# The output i f i t i s a da ta s to r e

va lueStore @1 : ValueStore ;
# The output i f i t i s a v a l u e s t o r e

atomicSwap @2 : AtomicSwap ;
}

}

########################################################################

struct Tx {
vin @0 : L i s t (TXIn) = [ ] ;
# Transact ion input vec to r .

vout @1 : L i s t (TXOut) = [ ] ;
# Transact ion output vec to r .

}

########################################################################
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B Consensus Object Specification

Listing 3: Cap’n Proto Consensus Object Specification

using Go = import "/go.capnp" ;
@0x85d3acc39d94e0f8 ;
$Go .package ("capn" ) ;
$Go . import ("github.com/MadHive/MadNet/consenus/capn" ) ;

const defaultRound : UInt32 = 0 ;
const de fau l tHe ight : UInt32 = 0 ;
const defaultChainID : UInt32 = 0 ;
const defaultNumberTransact ions : UInt32 = 0 ;
const defaultRClaims : RClaims = ( chainID = . defaultChainID ,

he ight = . de fau l tHe ight , round = . defaultRound ,
prevBlock = 0x"00" ) ;

const defaultBClaims : BClaims = ( chainID = . defaultChainID ,
he ight = . de fau l tHe ight , prevBlock = 0x"00" ,
txCount = . defaultNumberTransactions , txRoot = 0x"00" ,
s tateRoot = 0x"00" , headerRoot = 0x"00" ) ;

const defaultRCert : RCert = ( rClaims = . defaultRClaims ,
sigGroup = 0x"00" ) ;

const defaultPClaims : PClaims = ( bClaims = . defaultBClaims ,
rCert = . defaultRCert ) ;

const defaultNRClaims : NRClaims = ( rCert = . defaultRCert ,
rClaims = . defaultRClaims , s i gShare = 0x"00" ) ;

const de fau l tPropo sa l : Proposal = ( pClaims = . defaultPClaims ,
s i g n a t u r e = 0x"00" ) ;

const defaultNHClaims : NHClaims = ( proposa l = . de fau l tProposa l ,
s i gShare = 0x"00" ) ;

const defau l tPreVote : PreVote = ( proposa l = . de fau l tProposa l ,
s i g n a t u r e = 0x"00" ) ;

const defaultPreCommit : PreCommit = ( proposa l = . de fau l tProposa l ,
s i g n a t u r e = 0x"00" , preVotes = 0x"00" ) ;

const de fau l tPreVoteNi l : PreVoteNil = ( rCert = . defaultRCert ,
s i g n a t u r e = 0x"00" ) ;

const defaultPreCommitNil : PreCommitNil = ( rCert = . defaultRCert ,
s i g n a t u r e = 0x"00" ) ;

const defaultNextRound : NextRound = ( nRClaims = . defaultNRClaims ,
s i g n a t u r e = 0x"00" ) ;

const defau l tNextHeight : NextHeight = ( nHClaims = . defaultNHClaims ,
s i g n a t u r e = 0x"00" , preCommits = 0x"00" ) ;

const defaul tBlockHeader : BlockHeader = ( bClaims = . defaultBClaims ,
sigGroup = 0x"00" , txHshLst = 0x"00" ) ;

struct RClaims {
chainID @0 : UInt32 = . defaultChainID ;
he ight @1 : UInt32 = . de fau l tHe ight ;
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round @2 : UInt32 = . defaultRound ;
prevBlock @3 : Data = 0x"00" ;

}

struct RCert {
rClaims @0 : RClaims = . defaultRClaims ;
sigGroup @1 : Data = 0x"00" ;

}

struct BClaims {
chainID @0 : UInt32 = . defaultChainID ;
he ight @1 : UInt32 = . de fau l tHe ight ;
prevBlock @2 : Data = 0x"00" ;
txCount @3 : UInt32 = . defaultNumberTransact ions ;
txRoot @4 : Data = 0x"00" ;
s tateRoot @5 : Data = 0x"00" ;
headerRoot @6 : Data = 0x"00" ;

}

struct PClaims {
bClaims @0 : BClaims = . defaultBClaims ;
rCert @1 : RCert = . defaultRCert ;

}

struct Proposal {
pClaims @0 : PClaims = . defaultPClaims ;
s i g n a t u r e @1 : Data = 0x"00" ;
txHshLst @2 : Data = 0x"00" ;

}

struct PreVote {
proposa l @0 : Proposal = . de f au l tPropo sa l ;
s i g n a t u r e @1 : Data = 0x"00" ;

}

struct PreVoteNil {
rCert @0 : RCert = . defaultRCert ;
s i g n a t u r e @1 : Data = 0x"00" ;

}

struct PreCommit {
proposa l @0 : Proposal = . de f au l tPropo sa l ;
s i g n a t u r e @1 : Data = 0x"00" ;
preVotes @2 : Data = 0x"00" ;

}

struct PreCommitNil {
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rCert @0 : RCert = . defaultRCert ;
s i g n a t u r e @1 : Data = 0x"00" ;

}

struct NRClaims {
rCert @0 : RCert = . defaultRCert ;
rClaims @1 : RClaims = . defaultRClaims ;
s i gShare @2 : Data = 0x"00" ;

}

struct NextRound {
nRClaims @0 : NRClaims = . defaultNRClaims ;
s i g n a t u r e @1 : Data = 0x"00" ;

}

struct NHClaims {
proposa l @0 : Proposal = . de f au l tPropo sa l ;
s i gShare @1 : Data = 0x"00" ;

}

struct NextHeight {
nHClaims @0 : NHClaims = . defaultNHClaims ;
s i g n a t u r e @1 : Data = 0x"00" ;
preCommits @2 : Data = 0x"00" ;

}

struct BlockHeader {
bClaims @0 : BClaims = . defaultBClaims ;
sigGroup @1 : Data = 0x"00" ;
txHshLst @2 : Data = 0x"00" ;

}
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C Technical Cryptography

In this section we present in detail the specifics of the cryptography we will be using for
MadNetwork. At times we will be verbose in our algorithmic details and design choices to
allow for others to understand our decisions.

We will begin by comparing this work with the Ethereum Distributed Key Generation
whitepaper [23] in Sec. C.1; our design is based this paper. Some of the implementation-
specific details are covered in Sec. C.2. In Sec. C.3, we discuss the mathematics related
to pairing-based cryptography; this is integral to our work as it is required for our group
signatures. We describe the distributed key generation protocol in Sec. C.4; the specific
method of shared secret encryption is described in Sec. C.5. We discuss how to construct
group signatures in Sec. C.6. Group signatures from pairing-based cryptography require a
hash-to-curve function, and we talk about our construction based on [10, 27] in Sec. C.7.

We follow [23] in our definition of (t, n)-thresholded system, where we need t + 1 actors
for consensus. Unfortunately, this is different than what was used previously, where (t, n)-
thresholded system meant t actors were needed to agree. We keep this difference for ease of
comparison with the referenced paper.

C.1 Comparision with Ethereum Distributed Key Generation Pa-
per

In [23], the authors presented the Ethereum Distributed Key Generation whitepaper. Here,
participants work together to form a master public key (the public key for the group) based
on verifiable secret sharing. The master secret key (the private key for the group) is the
summation of the shared secrets correctly shared by valiadators. This system may proceed
even with a limited number of Byzantine actors. In the end, participants may compute
partial signatures of a message which may be combined to form a valid group signature.

While we follow the procedure of [23] in general, there are other concerns that must be
taken into consideration. The MadNetwork will be a sidechain of Ethereum, and the keys
we construct will be used to sign the blocks of our sidechain. By anchoring into Ethereum,
we are able to use smart contracts to enforce compliance with the consensus algorithm as
well as punish those who behave in a cryptographically-verifiable malicious way. Malicious
behavior include submitting false keys, submitting false proofs, signing invalid messages,
and similar actions. This is different from the original paper where everything happened
on Ethereum and participants who acted maliciously during the key derivation stage would
still be allowed to proceed because honest actors would be able to work together to derive
the correct information. In that setting, the focus was having a (t, n)-thresholded system
whereby t+1 actors are required to work together to sign messages for the group. Here, t and
n are preassigned. In our case, we specifically desire a Byzantine-fault tolerant thresholded
system, whereby we require t = d2n/3e − 1. Even though we have the same t values for
n = 3k and n = 3k − 1 (thereby potentially allowing one malicious validator to be ejected
without forcing a required restart), we will restart the DKG process whenever malicious
behavior is cryptographically proven. By forcing a restart upon pernicious action, validators
are discouraged from malicious activity as well as lose the opportunity to earn block rewards.
We also restart when validators fail to submit the required information. In this case when

68



malicious intent cannot be proven due to the possiblity of technical failure, a minor fine will
be given due to time cost of the other participants.

During the DKG process, all of the material necessary to recover a participant’s secret
is available provided enough actors work together. As mentioned in [23], this is useful in
order to allow for the DKG to continue even if certain participant’s fail to cooperate, but
the problem is that with this secret information it would be possible for a large enough
malicious subset (specifically, a majority greater than two-thirds) to recover a secret and
produce valid signatures from participant Pi proving malicious behavior that is not, in fact,
perpetrated by Pi. This is of serious concern because participants stake tokens on the basis
of being validators on our blockchain and receiving block rewards for their computation and
are threatened with losing stake should they behave nefariously.

Requiring at least 67% percent of the validators to work together in order to pro-
duce stake-burning results is better than a 51% Attack which can occur in Proof-of-Work
blockchains but it leaves something to be desired; we would like for honest validators to be
immune to the previously-mentioned behavior even if there is only one honest participant. To
combat this, we will require all messages to be signed by a participant’s Ethereum’s private
key. This will allow all messages to be validated against the Ethereum public key and will
be safe so long as the Ethereum private key is secure. In this way, any secret information
leaked during the distributed key generation will not enable Byzantine actors to produce
cryptographic proof of malicious behavior against honest participants.

C.2 Specific Implementation Details

At this point in time, the Ethereum Virtual Machine (EVM) only allows for certain elliptic
curve operations to be performed inexpensively from precompiled contracts. In order to
keep gas costs low, we will rely heavily on these contracts. The precompiled contracts are
ECAdd, ECMul, and PairingCheck; see Alg. 8 for specifics. While they have the names
addition and scalar multiplication, we will primarily be using multiplicative notation in this
whitepaper; the exception will be when we talk about hash-to-curve algorithms in Sec. C.7.
Furthermore, we may not explicitly reference ECAdd and ECMul when using them in our
algorithms for space considerations, although we will use comments to make this clear.

We require elliptic curves with pairing-based cryptography. The source code for curve
bn256 is implemented for Ethereum here1. This code implements the Optimal Ate pairing
from [19] and is based on Barreto-Naehrig curves [4], a family of pairing-friendly curves. A
more recent version of Cloudflare’s library can be found here2. Cloudflare’s version includes
a hash-to-curve function based on [10], which is the same paper we base our hash function
on. Unfortunately, the newer version uses a different prime; the Ethereum library uses a
254-bit prime while the current Cloudflare library uses a 256-bit prime. We modified the
Ethereum code and included functions for computing modular square roots as well as a
hash-to-curve algorithm. We plan to make these updates available to others, as they will be
useful whenever cryptographic signatures are used. Our code includes an implementation
for the hash-to-curve algorithms described in [10]; see Sec. C.7.

1 https://github.com/ethereum/go-ethereum/tree/master/crypto/bn256/cloudflare
2 https://github.com/cloudflare/bn256
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Algorithm 8 Precompiled Ethereum Contracts for Elliptic Curves

1: function ECAdd(a1,a2) . a1, a2 ∈ G1

2: return a1 + a2 . Elliptic curve addition
3: end function
4:

5: function ECMul(a,k) . a ∈ G1, k ∈ Fp
6: return [k] a . Elliptic curve addition
7: end function
8:

9: function PairingCheck(a0,b0,· · · ,ak−1,bk−1) . ai ∈ G1, bi ∈ G2

10: t = 1 . t ∈ F∗p12
11: for i = 0; i < k; i++ do
12: t = t · e (ai, bi)
13: end for
14: if t = 1 then
15: return true

16: else
17: return false

18: end if
19: end function

The underlying field operations perform arithmetic modulo a prime number. This can
be difficult to perform quickly [15, Chapter 14]. The bn256 library uses Montgomery encod-
ing [18] for efficiency; we will give an overview here although one reference is [15, Chapter
14.3.2]. The primary advantage of using the Montgomery encoding is that modular multi-
plication requires only multiplication with a potential subtraction; in particular, it does not
require division.

If we want to perform multiplication modulo p, let R > p such that gcd(R, p) = 1 and it is
convenient to perform modular arithmetic with respect to R. Given x ∈ Zp, the Montgomery
encoding of x is

x̃ ≡ xR mod p. (C.1)

Given two encoded values ã and b̃, Montgomery multiplication allows us to compute ãb:

ãb = ãb̃R−1 mod p. (C.2)

Here, R−1R = 1 mod p, so R−1 is the multiplicative inverse of R with respect to p. An
efficient implementation of Montgomery multiplication allows us to use it both for encoding
and decoding, and this is what the bn256 library does.

We now look at the elliptic curves in the pairing-based cryptography. Specifically, we
have the elliptic curve E/Fp where

E : y2 = x3 + ax+ b (C.3)

and constants
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p = 30644E72 E131A029 B85045B6 8181585D 97816A91 6871CA8D 3C208C16 D87CFD47

= 36u4 + 36u3 + 24u2 + 6u+ 1

q = 30644E72 E131A029 B85045B6 8181585D 2833E848 79B97091 43E1F593 F0000001

= 36u4 + 36u3 + 18u2 + 6u+ 1

u = 4965661367192848881

a = 0

b = 3

g1 = (1, 2)

h1 = (h1,x, h1,y)

h1,x = 081D36DE F693881E DFC5614E AE25BB5C 228A7142 A36EE533 47B09434 1D541F2C

h1,y = 2CD20C36 14D407F3 39B9BB25 EF23979C D2EE1E45 310EB0C5 023A3F5F D52D8B11

(C.4)

From here, we see p = 3 mod 4 and p = 1 mod 6. If E(Fp) is the group of points on E/Fp
acting under addition, then E(Fp) = 〈g1〉 and |E(Fp)| = q; here, g1 the standard generator.
From the construction of BN curves, q is prime, which implies that any nontrivial element
of G1 is a generator. During the distributed key generation protocol, we will need another
generator h1 for E(Fp) such that dlogg1 h1 is unknown, which ensures no one is able to bias
the underlying probability distribution of the master public key. Here, we set

h1 = HashToG1([]byte("MadHive Rocks!")), (C.5)

where HashToG1 is the hash-to-curve function from Alg. 16 developed in Sec. C.7. In the
future h1 may change on each iteration of the DKG protocol, but it is constant at this point.

We let e : G1 × G2 → GT be our nondegenerate bilinear map over groups G1, G2, and
GT . We let G1 = E(Fp), G2 ⊆ E(Fp12), and GT ⊆ F∗p12 ; e is the Optimal Ate pairing [4]. By
design, we have |G1| = |G2| = |GT | = q. For efficient implementation, we will need to look
at the twist curve E ′/Fp2 where

E ′ : y2 = x3 + b′. (C.6)

In this case, b′ = b/ξ and the specific choice of ξ ∈ F∗p2 will be discussed below. We then
define

ψ : E ′(F2
p)→ E(F12

p )

(x′, y′) 7→
(
z2x′, z3y′

)
, (C.7)

and we see that ψ is an injective group homomorphism. Here, we use the definition Fp12 ≡
Fp2 [X] / (X6 − ξ), where ξ ∈ Fp2 is a nonsquare noncube and z ∈ Fp12 is one of the roots of
X6− ξ. That ξ ∈ F∗p2 exists follows from the fact p = 1 mod 6; for more information see [4,
Lemma 1]. It is this homomorphism ψ which allows for efficient computation, because this
allows most of our arithmetic operations to occur in Fp and Fp2 ; in particular, signatures
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are elements of E(Fp) and we represent public keys as elements of E ′(Fp2). The only time
arithmetic in Fp12 is required is when we compute the Optimal Ate pairing.

We now discuss the specific parameters for the twist curve E ′:

ξ = i+ 9

h2,x,i = 198E9393 920D483A 7260BFB7 31FB5D25 F1AA4933 35A9E712 97E485B7 AEF312C2

h2,x = 1800DEEF 121F1E76 426A0066 5E5C4479 674322D4 F75EDADD 46DEBD5C D992F6ED

h2,y,i = 090689D0 585FF075 EC9E99AD 690C3395 BC4B3133 70B38EF3 55ACDADC D122975B

h2,y = 12C85EA5 DB8C6DEB 4AAB7180 8DCB408F E3D1E769 0C43D37B 4CE6CC01 66FA7DAA

h2 = (h2,x,ii+ h2,x, h2,y,ii+ h2,h) . (C.8)

The values of ξ and h2 are from the bn256 implementation used in Ethereum. We specify
the i component before the non-i component following the library convention.

For BN curves like the one we are using, there is no known efficiently computable iso-
morphism ϕ : G2 → G1 [21, Chap 2.2.7], which makes our setting Type 3 [8].

As noted in the Cloudflare bn256 source code repository, the original implementation
had approximately 128 bits of security, but this has been reduced due to recent work [16].
The exact security level has been discussed here [3, 17], with [3] listing the security level at
100 bits. While this is below the desired 128-bit level, it is believed to be currently out of
reach. Even so, with this in mind we take precautions by enforcing regular key rotation in
order to ensure the security of the system. The decrease in security is partially mitigated
by the fact that validators use the Ethereum private key to sign messages throughout the
consensus algorithm.

C.3 Mathematical Background and Cryptographic Definitions

We let G1, G2, and GT be cyclic groups of order q. Let g1, h1 ∈ G1 and h2 ∈ G2 be
generators and require that the discrete logarithm dlogg1 h1 is unknown. The groups we
use were described in Sec. C.2. We let e : G1 × G2 → GT be an efficiently computable
nondegenerate bilinear pairing. In our case, signatures will be elements of G1 while public
keys will be elements of G2. See Table 1 for additional functions that will be used in our
algorithms.

We are building a sidechain on top of Ethereum. All of the validators will be required
to have an Ethereum public key. The DKG algorithm requires us to index the participants
from 1 to n. To do so, we order the participants with respect to their sorted Ethereum
public keys. Our algorithm will need an open broadcast channel; this will take place via
smart contracts on the Ethereum network.

At times we will want to ensure

e (hα1 , h2)
?
= e

(
h1, h

β
2

)
. (C.9)

Due to how PairingCheck is defined, we will need to check the equivalent

e
(
hα1 , h

−1
2

)
· e
(
h1, h

β
2

)
?
= 1. (C.10)
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u2b(u) Convert the unsigned integer u to its bit representation
b2u(b) Convert the bit representation b to its unsigned integer
s2b(s) Convert a string s to its bit representation

CTEq(x, y) Returns 1 when x and y are equal and 0 otherwise; runs in con-
stant time

χp(a) Computes the quadratic character of a with respect to p

H : {0, 1}∗ → {0, 1}256 Cryptographically secure hash function
H2C : {0, 1}∗ → G1 Cryptographically secure hash-to-curve function; see Sec. C.7

a||b Concatenation of a and b

Table 1: List of helper functions and notation.

If hα = (x, y), then (hα)−1 = (x,−y); this holds for all elliptic curves. For ease of notation,
we set h̄ = h−1. It may be convenient to store both h2 and h̄2.

C.4 Distributed Key Generation Protocol

We desire a Byzantine Fault Tolerant consensus algorithm. So, we let P be the total collection
of participants with |P| = n. We set the threshold t = d2n/3e−1 in our (t, n) secret sharing
protocol. Thus, it takes t + 1 users to reconstruct a secret, which corresponds to strictly
greater than two-thirds of the participants. We assume there is an open broadcast channel
between all participants. Encryption will be provided through Diffie-Hellman style shared
secret encryption; this will be discussed in Sec. C.5. The group shared secret, henceforth
called the master secret key, will be the sum of the shared secrets of each group member
who correctly shared his secret. Once there are t + 1 valid partial signatures, these will be
combined to form a group signature.

As stated above, although the final master public key will reside in G2, because the
precompiled contracts currently available in the Ethereum Virtual Machine only allow addi-
tion and scalar multiplication in G1 (multiplication and exponentiation in our multiplicative
notation), we will primarily use computations in G1 and anything required in G2 will be
confirmed via a PairingCheck call.

C.4.1 Participant Setup

Each participant Pi ∈ P begins by selecting a secret key ski ∈ Zq with public key pki = gski1 .
The public-private key pair 〈pki, ski〉 will be used for secure communication over the insecure
broadcast channel; it will not be used for signing any messages.

C.4.2 Verifiable Secret Sharing

Participant Pi chooses a secret si ∈ Zq to share with the other participants. To do this,
choose a secret polynomial fi : Zq → Zq with

fi(x) = ci0 + ci1x+ ci2x
2 + · · ·+ citx

t, (C.11)

where ci0 = si, ci1, · · · , cit are chosen uniformly in Zq. Setting
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Cik = gcik1 k ∈ {0, · · · , t} , (C.12)

we have the corresponding public polynomial Fi : Zq → G1:

Fi(x) = Ci0C
x
i1 · · ·Cxt

it . (C.13)

The shared secret from Pi to Pj is si→j = fi(j) and

si→j = Encrypt(ski, pkj, j, si→j) (C.14)

refers to a particular encryption scheme we discuss in Sec. C.5. Participant Pi will broadcast
the message

{si→1, si→2, · · · , si→i−1, si→i+1, · · · , si→n, Ci0, Ci1, · · · , Cit} (C.15)

over the broadcast channel. We note this message does not include the secret si→i.
Once participant Pj receives the message from Pi, he sets

ŝi→j = Decrypt(skj, pki, j, si→j). (C.16)

Pj then determines if

g
ŝi→j

1
?
= Fi(j). (C.17)

If we have equality, then ŝi→j = si→j. Otherwise, Pi incorrectly shared his secret.

C.4.3 Malicious shares

We now suppose that si→j is incorrect; that is, we do not have equality in Eq. (C.17). In
order to prove this to be the case, everyone needs to be able to prove that the encrypted
secret si→j is incorrect. To do this, Pj must publish and prove the shared secret kij; this is
required in order to ensure bad actors do not submit false proofs against honest actors.

Proving kij is the shared secret is based on showing

pkj = g
skj
1 and kij = pk

skj
i (C.18)

without sharing the secret key skj; that is, we wish to show dlogg1(pkj) = dlogpki
(kij) while

keeping their common value (Pj’s secret key skj) secret. To do this, we use a zero-knowledge
proof; see Alg. 9 for constructing the zk-proof and Alg. 10 for proof verification. One reference
for zk-proofs involving discrete logarithms is [7].

Thus, Pj would compute

π(k′ij) = DLEQ(g1, pkj, pki, k
′
ij, skj) (C.19)

and publish
〈
k′ij, π(k′ij)

〉
, where k′ij is claimed shared secret. This allows anyone to use

DLEQ-verify to determine its validity. If

DLEQ-verify(g1, pkj, pki, k
′
ij, π(k′ij)) = true, (C.20)
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then k′ij = kij, the shared secret. Using this, everyone can decrypt si→j by

ŝi→j = DecryptSS(kij, j, si→j, b) (C.21)

and determine if

g
ŝi→j

1
?
= Fi(j). (C.22)

If the DLEQ proof π(k′ij) shows k′ij is the shared secret between Pj and Pi and we do not
have equality in Eq. (C.22), then Pi is acted maliciously and should be removed. There are
two other possibilities: k′ij is not the shared secret, or k′ij is the shared secret and we have
equality in Eq. (C.22). In both cases, Pj acted maliciously and should be removed. Thus,
when Pj submits a claim that Pi failed to share a secret, either Pj’s or Pi’s stake will be
slashed.

In practice, Pj will submit Pi’s broadcast message to an Ethereum smart contract along
with purported shared secret k′ij and proof π(k′ij), and the smart contract would determine
its validity and burn stake as appropriate.

C.5 Shared Secret Encryption

As mentioned above, the shared secret from Pi to Pj is si→j = fi(j). To encrypt this, we
need to compute their shared secret:

kij = pk
skj
i = pkski

j = g
skiskj
1 . (C.23)

Encryption and decryption are based on the idea of a one-time pad; in particular, we use
outputs of cryptographic hashes of the x-coordinate of the shared secret along with the
index of the participant receiving the message as our “one-time pad”. This does not meet
the technical definition of a one-time pad as it is usually defined (one standard reference
is [15]), but the idea is similar. By including the index of the intended recipient in the hash
function, each symmetric encryption key is unique. See Alg. 11 for details.

C.6 Group Signatures

C.6.1 Constructing the Master Public Key

The goal of our consensus algorithm is to enable a Byzantine-fault tolerant subgroup to
cryptographically sign on behalf of the entire group without requiring every individual group
member to sign. This is enabled by signature aggregation in the appropriate way.

We let Q be the collection of qualified actors who correctly shared their secrets and
R ⊆ Q such that |R| = t+ 1; thus, R is a Byzantine-fault tolerant subgroup. As discussed
in [11, 12, 23], in order to ensure that no bad actors gain any information about the master
public key and not be able to change its underlying probability distribution, we require
h1 ∈ G1 such that dlogg1 h1 is unknown. We also let h2 ∈ G2 be a generator.

The individual shared secrets si allow us to define the master secret key msk:

msk =
∑
Pi∈Q

si. (C.24)
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Algorithm 9 Zero-knowledge proof of discrete-logarithm equality.

1: function DLEQ(x1,y1,x2,y2,α) . Construct zk-proof that y1 = xα1 and y2 = xα2 .
2: w ∈R Zq . xi, yi ∈ G1 with |G1| = q.
3: t1 = xw1
4: t2 = xw2
5: x1 = u2b(x1)
6: y1 = u2b(y1)
7: x2 = u2b(x2)
8: y2 = u2b(y2)
9: t1 = u2b(t1)

10: t2 = u2b(t2)
11: c = H(x1||y1||x2||y2||t1||t2)
12: c = b2u(c)
13: r = w − αc mod q
14: π = (c, r)
15: return π
16: end function

Algorithm 10 Zero-knowledge verification of discrete-logarithm equality proof.

1: function DLEQ-verify(x1,y1,x2,y2,π) . Determine validity of proof from DLEQ

2: (c, r) = π
3: t′1 = xr1y

c
1

4: t′2 = xr2y
c
2

5: x1 = u2b(x1)
6: y1 = u2b(y1)
7: x2 = u2b(x2)
8: y2 = u2b(y2)
9: t1p = u2b(t′1)

10: t2p = u2b(t′2)
11: cp = H(x1||y1||x2||y2||t1p||t2p)
12: c′ = b2u(cp)
13: if c = c′ then
14: return true

15: else
16: return false

17: end if
18: end function
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Algorithm 11 Encryption and decryption functions

1: function Encrypt(sk,pk,j,s) . Encrypt secret s to participant j; pk is j’s public key
2: k = pksk . k is the shared secret
3: kX = u2b(kx) . Convert x coordinate of shared secret to bytes
4: j = u2b(j)
5: s = u2b(s)
6: HKj = H(kX||j)
7: s = s⊕ HKj

8: return s

9: end function
10:

11: function Decrypt(sk,pk,j,s) . Decrypt secret s to participant j; sk is j’s secret key
12: k = pksk . k is the shared secret
13: xK = u2b(kx) . Convert x coordinate of shared secret to bytes
14: j = u2b(j)
15: HKj = H(kX||j)
16: s = s⊕ HKj

17: s = b2u(s)
18: return s
19: end function
20:

21: function DecryptSS(k,j,s) . Decrypt secret s to participant j
22: kX = u2b(kx) . Convert x coordinate of shared secret to bytes
23: j = u2b(j)
24: HKj = H(kX||j)
25: s = s⊕ HKj

26: s = b2u(s)
27: return s
28: end function

This gives us the master public key mpk:

mpk = hmsk
2

=
∏
Pi∈Q

hsi2 . (C.25)

Because everyone in Q correctly shared his secret, a Byzantine-fault tolerant subgroup R
can correctly obtain the secret si via Lagrange interpolation:
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si =
∑
Pj∈R

si→jRj

Rj =
∏
Pk∈R
k 6=j

k

k − j
. (C.26)

This would allow us to recover the secret si should Pi fail to share hsi1 below; however, we
take a stricter response and would view failure to share as malicious activity leading to stake
slashing.

We now proceed to compute mpk. Let

π(hsi1 ) = DLEQ(g1, g
si
1 , h1, h

si
1 , si) (C.27)

be the zk-proof that hsi1 is Pi’s portion of the master public key (technically part of mpk∗ as
defined below). Because Ci0 = gsi1 is public knowledge and Pi correctly shared his secret si,
it is possible to publicly verify hsi1 . Additionally, Pi will publish hsi2 so that we can ensure

PairingCheck(hsi1 , h̄2, h1, h
si
2 ) = 1. (C.28)

This will be called by a smart contract. Thus, failure of Pi to publish hsi1 , a valid proof
π(hsi1 ), and the corresponding hsi2 amounts to misbehavior which will lead to a fine.

The Ethereum smart contract will store hsi1 from all participants and broadcast hsi1 ,
π(hsi1 ), and hsi2 . From here, any participant will be able to submit

mpk =
∏
Pi∈Q

hsi2 (C.29)

to the smart contract. Because {hsi1 }i∈Q are stored and valid, the contract can construct

mpk∗ =
∏
Pi∈Q

hsi1 (C.30)

and call

PairingCheck(mpk∗, h̄2, h1,mpk) (C.31)

to ensure mpk is valid. The master public key can then be stored publicly and used for
group signature verification.

C.6.2 Constructing Group Signatures

At this point, we have successfully constructed the master public key mpk for Q and dis-
tributed the master secret key msk among the members of Q. We now turn our attention
to constructing group signatures from partial signatures.

Each participant Pj ∈ Q has a portion of the master secret key; this is portion is called
the group secret key :
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gskj =
∑
Pi∈Q

si→j. (C.32)

This is possible because we proved that every participant in Q correctly shared his secret
share. We note that that sj→j is included in the sum for gskj even though the encrypted
form was not publicly shared. Naturally, there is the corresponding group public key :

gpkj = h
gskj
2 . (C.33)

Here, gpkj is Pj’s portion of the master public key and will be broadcast to all users. Cryp-
tographic proof that gpkj is valid will be discussed in the next section.

The threshold property along with the previous definitions give us the following result:

msk =
∑
Pj∈R

gskjRj. (C.34)

These Rj factors only depend on R. It follows that

mpk =
∏
Pj∈R

gpk
Rj

j . (C.35)

This will allow partial signatures to be combined into a valid group signature.
We now assume that Q wants to sign message M . We let H2C(M) ∈ G1 be the result

of a hash-to-curve algorithm; these will be discussed in Sec. C.7. In this case, participant
Pj ∈ R computes the partial signature

σj = [H2C(M)]gskj . (C.36)

For security, we should confirm

PairingCheck(σj, h̄2, H2C(M), gpkj) = 1 (C.37)

to ensure we have a valid signature. If gpkj is stored and we can call the hash-to-curve
function H2C , then the only inputs will be the message M and signature σj.

It is easy to compute the group signature from the partial signatures:

σ =
∏
Pj∈R

σ
Rj

j . (C.38)

The Rj constants are defined in Eq. (C.26); as mentioned above, the Rj depend upon R
and can be computed by anyone. Because σj ∈ G1, signature aggregation could be carried
out by the EVM if desired; the gas cost would come from calls to ECAdd, ECMul, and
modular exponentiation, but this would be expensive. We now prove this is the signature
corresponding to the master public key:
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e(σ, h2) =
∏
Pj∈R

e
(
σ
Rj

j , h2

)
=
∏
Pj∈R

e
(

[H2C(M)]gskj , h
Rj

2

)
=
∏
Pj∈R

e

(
H2C(M),

[
h
gskj
2

]Rj

)
= e(H2C(M),mpk). (C.39)

It follows that

PairingCheck(σ, h̄2, H2C(M),mpk) = 1. (C.40)

This allows every member of R to compute the signature for the entire group while not
requiring anyone to share his signing key. This is of utmost importance for security.

C.6.3 Malicious Group Public Key Shares

We now look at how to ensure the broadcast value of gpkj is valid.
Along with the Pj’s group public key gpkj ∈ G2, there is the corresponding version in

G1:

gpk∗j = g
gskj
1 . (C.41)

Note the base is g1 and not h1 as in the case of mpk∗ in Eq. (C.30). Participant Pj will
publish a signature σj of a predetermined message M for security purposes. An initial check
will ensure

PairingCheck(σj, h̄2, H2C(M), gpkj) = 1; (C.42)

any validator who provides an invalid signature is clearly malicious.
Because Pj correctly shared his secret, gpk∗j is public knowledge, as

gpk∗j =
∏
Pi∈Q

Fi(j). (C.43)

Thus, it could be reconstructed inside a smart contract. From there, we will ensure

PairingCheck(gpk∗j , h̄2, g1, gpkj) = 1. (C.44)

Requiring submission of gpk∗j and the associated proof could be required at the time of
submission. This would be costly, though, and will instead allow the other participants to
prove malicious behavior. We would prefer the entire process to be as inexpensive as possible
should there be no malicious actors.

It will be expensive to carry out this proof of malicious action. The reason is that in order
to compute gpk∗j , the message containing the shared secrets and public coefficients from every
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Precompile Gas Cost

ECAdd 150
ECMul 6000

PairingCheck 113000
ModExp 13056

Table 2: Gas cost of important precompiled contracts on the Ethereum Virtual Machine.

participant will need to be entered into a smart contract in order to obtain the right hand
side of Eq. (C.43). Because of this, there is another, cheaper way to prove malicious behavior
provided a Byzantine-fault tolerant group correctly submits gpkj with valid signatures σj
and we discuss this now.

First, a participant can go through all possible subgroups R ⊆ Q searching for a subset
whose signatures can be combined to form a valid group signature. Once a valid subset R
is found, we can then choose Pi ∈ Q\R in order to determine if {Pi}∪ (R \ {Pv}) can form
a valid signature; if it does not, then Pi is malicious. Here Pv ∈ R is a fixed. In this case,
two lists of participants would be entered into a smart contract: a list of valid participants
followed by a list of invalid participants. It is straightforward to show the list of valid
participants form a valid group signature. From there, malicious participant’s signatures are
included one at a time to show that they form invalid signatures, giving cryptographic proof
of malicious behavior. Naturally, it would be a malicious action if false participant lists were
submitted.

We now look at the costs of both methods. The major costs will be calling the precompiled
contracts ECAdd, ECMul, PairingCheck, and ModExp (modular exponentiation); see
Table 2 for the specific gas costs. Note that the cost for PairingCheck comes from our
assumption that we are testing 2 pairings, while the cost for ModExp comes from the fact
that all of our arguments are 256-bit (32-byte) unsigned integers. These costs come from
EIP-1983 and EIP-11084.

We begin with the standard method. First, to compute gpk∗j , we must compute Fi(j):

Fi(j) = Ci0C
j
i1C

j2

i2 · · ·C
jt

it . (C.45)

The cost of computing Fi(j) is dominated by t calls to ECMul. This will be done for
each element in Q, so the main computation is nt calls to ECMul in addition to a call to
PairingCheck. Thus, we see

Cost of Standard Proof ∼ 113000 + 4000n2. (C.46)

For n = 20, this corresponds to 1.7M gas; the gas limit is 10M.
We now look at the cost of the group method. We will ignore the initial cost of ensuring

a valid group signature from R. The computation consists of forming

σ =
∏

Pj∈R∗k

σ
Rj

j , (C.47)

3 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-198.md
4 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
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where

R∗k = (R \ Pv) ∪ {Pk} (C.48)

for Pv ∈ R fixed and Pk ∈ I, the set of participants who incorrectly shared gpkj. From
there, we would call

PairingCheck(σ, h̄2, H2C(M),mpk) (C.49)

to ensure that this is an invalid signature, and the initial check confirming R forms a valid
signature implies that Pk is malicious.

Each group signature σ will require forming Rj and computing σ
Rj

j . After computing Rj,

we require one ECMul call to compute σ
Rj

j . The expensive part turns out to be forming
Rj, and we focus on its straightforward computation. We recall from Eq. (C.26) that

Rj =
∏
Pk∈R
k 6=j

k

k − j
. (C.50)

Naively, we would need to compute t finite field inversions, which corresponds to tModExp
calls, to compute Rj. This must be performed t + 1 times to form σ; we must also call
ECMul t+ 1 times but this is negligible. Finally, we must call

PairingCheck(σ, h̄2, H2C(M),mpk); (C.51)

this call must fail for invalid signatures. Thus, we have

Cost of Naive Group Proof ∼ 113000 + 5800n2. (C.52)

For n = 20, this corresponds to 2.4M gas. This is more expensive than the previous version,
but we can do better.

The main cost comes from the finite field inversions, which require a call to ModExp.
To fix this, we precompute these inverses and include them in the function call. At the
beginning of the call, we check to make sure that the submitted inverses are valid; if they
are valid, we proceed with the accusation, and if they are invalid, we stop. Everything else is
the same as before; see Alg. 12 for the complete description. For each accusation, the main
cost is t+ 1 ECMul calls as well as one pairing check. Now, these same computations must
be included for the initial check of a valid group signature, but we will ignore that for now.
Thus, we have the cost to prove malicious action for one participant:

Cost of Efficient Group Proof ∼ 113000 + 4000n. (C.53)

For n = 20, this corresponds to 200K gas. This is more efficient than computing gpk∗j via
smart contract.

Due to the costs, validators would always prefer to use the group method over submitting
all of the sent messages. Even so, submitting all messages will always work, while in the
group setting we require a Byzantine-fault tolerant set of honest validators.
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Algorithm 12 Accusation against malicious gpkj shares using group signatures.

1: function GrpAccGPKj(invArray, honestIndices, dishonestIndices)
2: if Length(honestIndices) < t+ 1 then
3: return . Require t+ 1 validators to make a valid signature
4: end if
5: validInvs = CheckInverses(invArray)
6: if validInvs 6= true then
7: return . Did not submit valid multiplicative inverses
8: end if
9: IndexArray = honestIndices[0 : t+ 1] . Include first t+ 1 participants

10: σ = AggregateSignatures(IndexArray)
11: validSig = PairingCheck(σ, h̄2, H2C(M),mpk)
12: if validSig 6= true then
13: return . honestIndices do not form a valid group signature
14: end if
15: for i = 0; i < Length(dishonestIndices); i++ do
16: IndexArray[t] = dishonestIndices[i]
17: σ = AggregateSignatures(IndexArray)
18: validSig = PairingCheck(σ, h̄2, H2C(M),mpk)
19: if validSig 6= false then
20: return . dishonestIndices[i] submitted valid signature
21: end if
22: end for
23: end function

Algorithm 13 Determine if submitted inverses are correct

1: function CheckInverses(invArray)
2: validInvs = true . Assuming the form [1−1, 2−1, · · · , (n− 1)−1]
3: for i = 0; i < Length(invArray); i++ do
4: k = i+ 1
5: kinv = invArray[i]
6: r = kinv · k mod q
7: if r 6= 1 then
8: validInvs = false

9: break
10: end if
11: end for
12: return validInvs

13: end function
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Algorithm 14 Compute group signature

1: function AggregateSignatures(IndexArray, invArray)
2: σ = Identity . Set to identity element of G1

3: for idx = 0; idx < t+ 1; idx++ do
4: j = IndexArray[idx]
5: Rj = ComputeRj(j, IndexArray, invArray)
6: t = ECMul(σj, Rj) . σj is j’s stored signature
7: σ = ECAdd(σ, t)
8: end for
9: return σ

10: end function

Algorithm 15 Compute Rj for group signature

1: function ComputeRj(j, IndexArray, invArray)
2: Rj = 1
3: for idx = 0; idx < Length(IndexArray); idx++ do
4: k = IndexArray[idx]
5: t = k
6: if k = j then
7: continue
8: else if k > j then
9: α = k − j

10: else
11: t = (−1) · t mod q
12: α = j − k
13: end if
14: tinv = invArray[α− 1]
15: t = t · tinv mod q
16: Rj = Rj · t mod q
17: end for
18: return Rj

19: end function
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C.7 Hash-to-curve Functions

The contents of this section should not be considered a full proof of security but are for im-
plementation reference. Formal treatment of the security proofs for hash-to-curve functions
are handled in referenced works.

We turn our attention to the hash-to-curve functions implemented in our system. The
contents of this section are described hereafter. First, we review a mechanism often employed
to solve this problem. Then, we briefly discuss why this solution is not ideal in our setting.
Finally, we introduce the basis of our implementation and proceed into the definition of the
algorithms used in our system after a brief review of some required mathematical operations.
All algorithms may be found at the end of this section.

The seemingly standard, non-deterministic method to perform a hash-to-curve operation
in the elliptic curve setting is to use the “MapToGroup” method as presented in the original
BLS short signature paper [6]. In this method values are hashed into Fp by modular arith-
metic with a concatenated counter. This counter starts at a fixed value, and is incremented
until a value is found that creates a valid point on the specified elliptic curve. While this may
be sufficient in some instances, we prefer deterministic methods due to the need for bounded
computational overhead. In our system, the need for bounded computational overhead arises
from a desire to allow an Ethereum smart contract to perform the hash-to-curve operations
with bounded gas consumption. Deterministic methods also have the benefit of minimizing
side-channel attacks in those algorithms that require such protection.

The hash-to-curve implementation selected allows the problem space to be divided into
independent problems such that their solutions may be composed. Specifically, we first hash
to the base field (hash map h : {0, 1}∗ → F) and then find a deterministic map from the base
field to the elliptic curve (function f : F→ E(F)). This approach allows for a separation of
concerns and has become a standard approach to the problem of hashing into an elliptic curve
[10, 14, 27]. Although this strategy does offer a simplified view of the problem, mapping from
the base field to the elliptic curve is nontrivial. Additionally, it is frequently the case that
f is not surjective, but we can overcome this limitation to obtain a surjective hash-to-curve
algorithm under easily-satisfied conditions [10, 24]. Specifically, we use domain-separation
in order to obtain independent hash functions. These independent hash functions allow us
overcome a non-surjective mapping. We will fully address this concern later in this document.

Our discussion of hashing functions follow [10, 27]. We ask the reader to note that in
the remaining work of this section, we view the group E(Fp) additively unless otherwise
specified. We highlight this fact because this is different from the multiplicative notation
used previously in this document. Before we define our implementation of the hash-to-curve
algorithms employed, we feel a review of the mathematics would benefit the reader. Thus,
we first review the mathematics necessary to perform the hash-to-curve operations. After
this review, we present the algorithm for hashing to G1 and then present the algorithm for
hashing to G2.

For reference, the full HashToG1 algorithm can be found in Alg. 16 and the full algo-
rithm for HashToG2 can be found in Alg. 21.
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C.7.1 Inverses, Square Roots, and Legendre Symbols in Fp

In this section we review some finite field mathematics that are important in our hash-to-
curve setting.

We begin by reviewing inversion in Fp. First, we recall F∗p ≡ Fp \ {0}, the nonzero
elements of our finite field. For a ∈ F∗p, we have Euler’s formula:

ap−1 = 1 mod p. (C.54)

This implies a−1 mod p = ap−2. We acknowledge more efficient methods for computing
modular inverses are possible, but exponentiation can easily be performed in constant time,
which is a goal of our implementation. This concludes our discussion of computing inverses
in Fp.

We now review the mechanisms for computing Legendre symbols. We recall that a ∈ F∗p
is a quadratic residue if there is x ∈ Fp such that x2 = a mod p; otherwise, a is a called a
quadratic nonresidue. This allows us to define the Legendre symbol [13]:

χp(a) ≡


1 if there a is a quadratic residue modulo p.

−1 if there a is a quadratic nonresidue modulo p.

0 if p | a
(C.55)

The Legendre symbol has a simple formula:

χp(a) = a
p−1
2 . (C.56)

This formula holds even when a = 0. This concludes our discussion of computing the
Legendre Symbol in Fp.

Computing square roots is more challenging. We now review the mechanism of computing
square roots. In our case p = 3 mod 4, so there is a simple formula to solve x2 = a:

x = a
p+1
4 . (C.57)

This relies on the assumption that a is a quadratic residue, so a
p−1
2 = 1. This concludes our

discussion of computing the square roots in Fp.
Taking inverses, Legendre symbols, and square roots gives us the necessary tools to hash

to G1. This ends the preliminary work necessary to develop HashToG1.

C.7.2 Inverses, Square Roots, and Legendre Symbols in Fp2

The previous section reviewed the mathematics of inverses, square roots, and Legendre
Symbols in Fp. We must be able to perform the same operations in Fp2 if we wish to hash
to G2. While computing square roots and inverses may be familiar to the reader in Fp, the
operations require special handling in Fp2 . We review these mechanisms now.

We first address the problem of computing inverses in Fp2 . Our discussion and methods
follow [2], and we present their general results applied to our particular case. As mentioned
above, the setting of our elliptic curve is p = 3 mod 4. This implies −1 is a quadratic
nonresidue. Thus, we have the following isomorphism:
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Fp2 ' Fp[i]/
(
i2 + 1

)
. (C.58)

This is the analogous to constructing the complex numbers C from the real numbers R. Our
implementation uses this construction. We may use this construction to compute an efficient
inversion as follows:

(a0 + a1i)
−1 =

a0 − a1i
a20 + a21

. (C.59)

The main computational cost of this operation is the inversion of an element in Fp. This
concludes our discussion of computing inverses in Fp2 .

We now begin our discussion of computing the Legendre Symbol in Fp2 If a = a0 + a1i ∈
Fp2 , then a is a quadratic residue in Fp2 if and only if a20 + a21 is a quadratic residue in Fp.
The main computational cost of this operation is the computation of the Legendre symbol of
an element in Fp. From the above we have the Legendre symbol in Fp2 , which we denote as
LegendreFP2 or χp2(·); this particular algorithm is presented in Alg. 19. This concludes
our discussion of computing the Legendre Symbol in Fp2 .

We will now look at computing square roots in Fp2 . The main idea is to find b ∈ Fp2 and
odd s such b2as = 1. In this case, we see

[
ba

s+1
2

]2
= b2as+1

= a. (C.60)

If we set

b =
(

1 + a
p−1
2

) p−1
2

s =
p− 1

2
, (C.61)

then when b 6= 0, we have b2as = 1. When b = 0, we have a
p−1
2 = −1. In this case, our square

root is ia
p+1
4 . This procedure is formally presented in Alg. 20. The main computational cost

of this operation is two exponentiations in Fp2 . This concludes our discussion of computing
square roots in Fp2 and the preliminary review of those operations necessary to develop
HashToG2.

C.7.3 Hashing to Base

In this section we will describe the hash-to-base operation. We begin by discussing the
construction of a random oracle into Fp using a single cryptographic hash function with
domain separation. We then bound the deviation from uniformity in this operation.

In the following H is a 256-bit hash function. In our implementation we use Keccak256.
Note this is the Sha3 variant used by Ethereum that differs from the NIST approved Sha3
hash function due to a difference in the handling of padding.
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Let H act as a random oracle. We map from H to Z by interpreting the output of a
cryptographic hash function as a big endian unsigned integer. This can be seen in lines 4
and 5 of HashToBase as the function named b2u. Although we may naively map from Z
to Zp by simply taking the ouput of H modulo p, this would be insecure in our setting due
to the nonuniformity of this operation. In order to ensure the mapping from Z to Zp is more
uniformly distributed, domain separation is utilized. Specifically, we use domain separation
in order obtain independent hash functions from H through concatenation of constants with
the message being hashed. These independent hash functions allow us to create a secure
512-bit random number from a single cryptographic hash function. The full explanation of
this operation is below.

Let HashToBase : {0, 1}∗ × {0, 1}8 × {0, 1}8 → Fp denote our random oracle into the
underlying field Fp. In the HashToBase operation the first component corresponds to the
underlying message being hashed, while the last two elements provide the necessary domain
separation. See Alg. 17 for the full implementation.

Due to the fact p is prime and not a power of 2, there will be some nonuniformity in the
resulting distribution of HashToBase. We investigate this nonuniformity now.

First, we assume that H : {0, 1}∗ → ZN is a random oracle and p ∈ {1, 2, · · · , N − 1}. We
want to determine how much H(m) mod p deviates from uniformity. We restrict ourselves
to the case when p - N . Let

N = qp+ r (C.62)

with 0 ≤ r < p and q ≥ 1. Because p - N , we have r ≥ 1. Let X be uniformly distributed
on ZN and set Xp = X mod p. Furthermore, we let Up be the uniform distribution modulo
p. Then

P (Xp ∈ {0, · · · , r − 1}) =
q + 1

N
(C.63)

and

P (Xp ∈ {r, · · · , p− 1}) =
q

N
. (C.64)

Here, P denotes the probability of an event occurring. We now determine the deviation of
Xp from the uniform distribution Up:

∆ (Xp, Up) ≡
p−1∑
k=0

|P(Xp = k)− P(Up = k)|

=
r−1∑
u=0

∣∣∣∣q + 1

N
− 1

p

∣∣∣∣+

p−1∑
u=r

∣∣∣∣ qN − 1

p

∣∣∣∣
= r

qp+ p−N
pN

+ (p− r) N − qp
pN

≤ p

N
. (C.65)
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From this, we see that if p is a k-bit prime and N = 2k+`, then the deviation from uniformity
is ≤ 2−`.

In our case, p is a 254-bit prime and we concatenate the output of independent hash
functions in order to have a uniformly distributed 512-bit output. From the above it may
be seen that HashToBase produces outputs whose deviation from uniformity is less than
2−258. This deviation is sufficiently small as to not be of concern. Further work is required
to more formally prove this assumption, but this work is not included at this time.

C.7.4 Base to G1

In this section we discuss the construction of a hash-to-G1 algorithm. We begin by noting the
non-surjective nature for many functions f : Fp → E(Fp). Then, we cite a known solution to
this problem and provide necessary mathematics to understand the fundamental operation
that overcomes the problem. Next, we discuss the actual implementation. Lastly, we discuss
specific exclusion of three points from the allowable outputs of this algorithm for security
purposes.

Let us now suppose that we have a hash function h : {0, 1}∗ → Fp and a deterministic
map f : Fp → E(Fp). As has been previously stated, in many situations [10, 14, 27] f is
not surjective. That is, there are points on the elliptic curve E(Fp) (sometimes a nontrivial
fraction) which cannot be reached by f . Even so, if we use domain separation to construct
independent hash functions, h1, h2 : {0, 1}∗ → F, then

F (m) = f(h1(m)) + f(h2(m)) (C.66)

is indistinguishable from a random oracle on E(Fp) under certain restrictions on f . See [10,
24] for details.

We now turn our attention to determining f : Fp → E(Fp). Finding a map f : Fp →
E(Fp) is involved. Our BN curve has the form

E : y2 = g(x)

= x3 + b. (C.67)

From [10], it possible to show there are x1, x2, x3, y ∈ Fp such that

g(x1)g(x2)g(x3) = y2. (C.68)

When y 6= 0, quadratic reciprocity implies that g(xi) is square for some i; that is, for some
i we have (xi,

√
g(xi) ) ∈ E(Fp). For uniqueness, we choose the smallest i. We will use the

construction of [10] to determine such points with some modifications based on work in [27].
The exact algorithm can be found in Alg. 18.

One of the main difficulties is determining i in such a way as to not leak information;
because of this, we do not wish to rely upon if statements. In [10], they suggested the
function

ψ(r1, r2) = [(r1 − 1) r2 mod 3] + 1. (C.69)
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This function works under the assumption that modular arithmetic always returns positive
integers. This is not always the case in programming languages; in particular, it does not
hold in Go (Golang), the language we use to implement these algorithms. To circumvent
this, we use the following function, which is implemented in Line 15 of Alg. 18:

(r1 − 1) (r2 − 3) /4 + 1. (C.70)

In [10], the authors encountered an issue when t = 0. Their solution was to define

BaseToG1(0) =

(
−1 +

√
−3

2
,
√

1 + b

)
. (C.71)

Wahby and Boneh [27] suggest another method, which we implement, in order to have a more
efficient algorithm. This implementation also affords the benefit of not needing to handle
the case of t = 0 separately. This can be seen in Line 7 of Alg. 18 where we define α as the
inverse of a value which depends on t ∈ Fp. When t = 0, we compute α = 0 because we
compute inversions via exponentiation. Thus, the computational convention 0−1 = 0 mod p
is established. This leads to the same result as in Eq. (C.71) without special handling.

We have cryptographic insecurity when HashToG1(m) = gα1 for known α. Note we
briefly switch back to multiplicative notation at this time. In practice, it is likely this
insecurity will only be known when α ∈ {−1, 0, 1} or is sufficiently close to these values. We
assume we may not fix simple proximity to these values, and thus only explicitly address
the case of α ∈ {−1, 0, 1}. For clarity, this notation specifies the hash function outputs of
the identity element, the generator, or the generator’s inverse. Due to the concerns around
the use of these points, we will not allow these individual cases. In order to enforce this
requirement we include a SafePointCheck in HashToG1; see Line 7 in Alg. 16. This
function checks the point returned from the hash function for equivalence with the identity
element OR equivalence of the point’s x coordinate with 1. If either of these conditions is
true, an error is raised. Although the probability of a hash mapping to these points is small,
this error must be handled appropriately to prevent an attacker from causing unexpected
errors in a remote system due to specially crafted messages.

C.7.5 Base to G2

We now take up the slightly more challenging possibility of computing a hash function to
G2. Fortunately, we may utilize many of the previously described operations. Thus, we do
not repeat those explanations and only discuss those operations that differ. We would like
to remind the reader that the results in Sec. C.7.2 allow us to compute Legendre symbols
and square roots in Fp2 .

Using the derivation of [27, Section 3], we set u0 = 1 as in G1 to obtain

x1 =

√
−3 − 1

2
− t2

√
−3

t2 + g′(1)

x2 = −1− x2

x3 = 1− (t2 + g′(1))
2

3t2
, (C.72)
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for t ∈ Fp2 . Here, we have

E ′ : y2 = g′(x) = x3 + b′, (C.73)

where b′ = b/ξ = 3/ (i+ 9). With this choice, −g′(1) is a residue in Fp2 . This ensures that

t ∈ {0,±
√
−g′(1) } implies x1 is a valid point on the curve; thus, all inputs result in valid

outputs. See Alg. 22 for the algorithm. Thus, our hash functions to G1 and G2 are essentially
the same.

At this point, we have successfully mapped into E ′; however, our goal is to map into G2.
From [4], we know |E ′(Fp2)| = q (2p− q). This gives a cofactor r = 2p− q because p - q. We
take care of this by clearing the cofactor. See Alg. 21 for the full hash algorithm.
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Algorithm 16 Hash to G1

1: function HashToG1(m) . Hash-to-G1 algorithm for BN curves
2: t0 = HashToBase(m, 0x00, 0x01)
3: t1 = HashToBase(m, 0x02, 0x03)
4: h0 = BaseToG1(t0)
5: h1 = BaseToG1(t1)
6: h = ECAdd(h0, h1)
7: SafePointCheck(h) . Ensure h /∈ {O, g1,−g1}
8: return h
9: end function

Algorithm 17 Hash to the base field Fp
1: function HashToBase(m,i,j)
2: s0 = H(i||m)
3: s1 = H(j||m)
4: s0 = b2u(s0)
5: s1 = b2u(s1)
6: c = 2256 mod p . Precomputed constant
7: t0 = s0 · c mod p
8: t1 = s1 mod p
9: t = t0 + t1 mod p

10: return t
11: end function
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Algorithm 18 Base to G1

1: function BaseToG1(t)
2: p1 =

(
−1 +

√
−3
)
/2 . Precomputed constant

3: p2 =
√
−3 . Precomputed constant

4: p3 = 1/3 . Precomputed constant
5: p4 = g(1) . g(1) = 1 + b; Precomputed constant
6: s = (p4 + t2)

3

7: α = [t2 (p4 + t2)]
−1

. α = 0 when t = 0
8: x1 = p1 − p2t4α . On curve when α = 0
9: x2 = −1− x1

10: x3 = 1− p3sα
11: a1 = x31 + b
12: a2 = x32 + b
13: r1 = χp(a1)
14: r2 = χp(a2)
15: i = (r1 − 1) (r2 − 3) /4 + 1
16: c1 = CTEq(1, i)
17: c2 = CTEq(2, i)
18: c3 = CTEq(3, i)
19: x = c1x1 + c2x2 + c3x3
20: y = sign0(t)

√
x3 + b

21: return (x, y)
22: end function

Algorithm 19 Legendre symbol for Fp2 ; Alg. 8 from [2]

1: function LegendreFP2(a) . a = a0 + a1i ∈ Fp2
2: α = a20 + a21
3: return χp(α)
4: end function

Algorithm 20 Square Root in Fp2 ; Alg. 9 from [2]

1: function SqrtFP2(a) . a ∈ Fp2 ; assuming a is quadratic residue

2: t = a
p−3
4

3: y = ta
4: α = ty
5: if α = −1 then
6: x = iy
7: else
8: b = (1 + α)

p−1
2

9: x = by
10: end if
11: return x
12: end function
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Algorithm 21 Hash to G2

1: function HashToG2(m) . Hash-to-G2 algorithm for BN curves
2: t0,0 = HashToBase(m, 0x04, 0x05)
3: t0,1 = HashToBase(m, 0x06, 0x07)
4: t1,0 = HashToBase(m, 0x08, 0x09)
5: t1,1 = HashToBase(m, 0x0a, 0x0b)
6: t0 = t0,0i+ t0,1
7: t1 = t1,0i+ t1,1
8: h0 = BaseToTwist(t0)
9: h1 = BaseToTwist(t1)

10: h = ECAdd(h0, h1)
11: g = ECMul(h, r) . Clearing cofactor r = 2p− q
12: return g
13: end function

Algorithm 22 Base to E ′

1: function BaseToTwist(t)
2: p1 =

(
−1 +

√
−3
)
/2 . Precomputed constant

3: p2 =
√
−3 . Precomputed constant

4: p3 = 1/3 . Precomputed constant
5: p4 = g′(1) . g′(1) = 1 + b′; Precomputed constant
6: s = (p4 + t2)

3

7: α = [t2 (p4 + t2)]
−1

. α = 0 when t ∈ {0,±
√
−p4 }

8: x1 = p1 − p2t4α . On curve when α = 0
9: x2 = −1− x1

10: x3 = 1− p3sα
11: a1 = x31 + b′

12: a2 = x32 + b′

13: r1 = χp2(a1)
14: r2 = χp2(a2)
15: i = (r1 − 1) (r2 − 3) /4 + 1
16: c1 = CTEq(1, i)
17: c2 = CTEq(2, i)
18: c3 = CTEq(3, i)
19: x = c1x1 + c2x2 + c3x3
20: y = sign0(t)

√
x3 + b′

21: return (x, y)
22: end function
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